22.⑴設(shè).由題意有.化簡得. 查看更多

 

題目列表(包括答案和解析)

請先閱讀:
設(shè)可導(dǎo)函數(shù) f(x) 滿足f(-x)=-f(x)(x∈R).
在等式f(-x)=-f(x) 的兩邊對x求導(dǎo),
得(f(-x))′=(-f(x))′,
由求導(dǎo)法則,得f′(-x)•(-1)=-f′(x),
化簡得等式f′(-x)=f′(x).
(Ⅰ)利用上述想法(或其他方法),結(jié)合等式(1+x)n=
C
0
n
+
C
1
n
x+
C
2
n
x2+…+
C
n
n
xn
(x∈R,整數(shù)n≥2),證明:n[(1+x)n-1-1]=2
C
2
n
x+3
C
3
n
x2+4
C
4
n
x3+…+n
C
n
n
xn-1
;
(Ⅱ)當(dāng)整數(shù)n≥3時(shí),求
C
1
n
-2
C
2
n
+3
C
3
n
-…+(-1)n-1n
C
n
n
的值;
(Ⅲ)當(dāng)整數(shù)n≥3時(shí),證明:2
C
2
n
-3•2
C
3
n
+4•3
C
4
n
+…+(-1)n-2n(n-1)
C
n
n
=0

查看答案和解析>>

請先閱讀:
設(shè)可導(dǎo)函數(shù) f(x) 滿足f(-x)=-f(x)(x∈R).
在等式f(-x)=-f(x) 的兩邊對x求導(dǎo),
得(f(-x))′=(-f(x))′,
由求導(dǎo)法則,得f′(-x)•(-1)=-f′(x),
化簡得等式f′(-x)=f′(x).
(Ⅰ)利用上述想法(或其他方法),結(jié)合等式(x∈R,整數(shù)n≥2),證明:;
(Ⅱ)當(dāng)整數(shù)n≥3時(shí),求的值;
(Ⅲ)當(dāng)整數(shù)n≥3時(shí),證明:

查看答案和解析>>

請先閱讀:
設(shè)可導(dǎo)函數(shù) f(x) 滿足f(-x)=-f(x)(x∈R).
在等式f(-x)=-f(x) 的兩邊對x求導(dǎo),
得(f(-x))′=(-f(x))′,
由求導(dǎo)法則,得f′(-x)•(-1)=-f′(x),
化簡得等式f′(-x)=f′(x).
(Ⅰ)利用上述想法(或其他方法),結(jié)合等式(1+x)n=
C0n
+
C1n
x+
C2n
x2+…+
Cnn
xn
(x∈R,整數(shù)n≥2),證明:n[(1+x)n-1-1]=2
C2n
x+3
C3n
x2+4
C4n
x3+…+n
Cnn
xn-1

(Ⅱ)當(dāng)整數(shù)n≥3時(shí),求
C1n
-2
C2n
+3
C3n
-…+(-1)n-1n
Cnn
的值;
(Ⅲ)當(dāng)整數(shù)n≥3時(shí),證明:2
C2n
-3•2
C3n
+4•3
C4n
+…+(-1)n-2n(n-1)
Cnn
=0

查看答案和解析>>

設(shè)函數(shù)f(x)=2x3-3(a-1)x2+1,其中a≥1.

(1)求f(x)的單調(diào)區(qū)間;

(2)討論f(x)的極值.

所以f(-1)=2是極大值,f(1)=-2是極小值.

(2)曲線方程為y=x3-3x,點(diǎn)A(0,16)不在曲線上.

設(shè)切點(diǎn)為M(x0,y0),則點(diǎn)M的坐標(biāo)滿足y0=x03-3x0.

因f′(x0)=3(x02-1),故切線的方程為y-y0=3(x02-1)(x-x0).

注意到點(diǎn)A(0,16)在切線上,有16-(x03-3x0)=3(x02-1)(0-x0),

化簡得x03=-8,解得x0=-2.

所以切點(diǎn)為M(-2,-2),

切線方程為9x-y+16=0.

查看答案和解析>>

已知曲線上動(dòng)點(diǎn)到定點(diǎn)與定直線的距離之比為常數(shù)

(1)求曲線的軌跡方程;

(2)若過點(diǎn)引曲線C的弦AB恰好被點(diǎn)平分,求弦AB所在的直線方程;

(3)以曲線的左頂點(diǎn)為圓心作圓,設(shè)圓與曲線交于點(diǎn)與點(diǎn),求的最小值,并求此時(shí)圓的方程.

【解析】第一問利用(1)過點(diǎn)作直線的垂線,垂足為D.

代入坐標(biāo)得到

第二問當(dāng)斜率k不存在時(shí),檢驗(yàn)得不符合要求;

當(dāng)直線l的斜率為k時(shí),;,化簡得

第三問點(diǎn)N與點(diǎn)M關(guān)于X軸對稱,設(shè),, 不妨設(shè)

由于點(diǎn)M在橢圓C上,所以

由已知,則

由于,故當(dāng)時(shí),取得最小值為

計(jì)算得,,故,又點(diǎn)在圓上,代入圓的方程得到.  

故圓T的方程為:

 

查看答案和解析>>


同步練習(xí)冊答案