題目列表(包括答案和解析)
(本小題滿分13分)
某校要從藝術(shù)節(jié)活動(dòng)中所產(chǎn)生的4名書(shū)法比賽一等獎(jiǎng)的同學(xué)和2名繪畫(huà)比賽一等獎(jiǎng)的同學(xué)中選出2名志愿者,參加廣州亞運(yùn)會(huì)的服務(wù)工作。求:
(1)選出的2名志愿者都是獲得書(shū)法比賽一等獎(jiǎng)的同學(xué)的概率;
(2)選出的2名志愿者中1名是獲得書(shū)法比賽一等獎(jiǎng),另1名是獲得繪畫(huà)比賽一等獎(jiǎng)的同學(xué)的概率.
(本小題滿分12分)
某校要用三輛汽車從新校區(qū)把教職工接到老校區(qū),已知從新校區(qū)到老校區(qū)有兩條公路,汽車走公路①堵車的概率為,不堵車的概率為;汽車走公路②堵車的概率為p,不堵車的概率為1—p。若甲、乙兩輛汽車走公路①,丙汽車由于其他原因走公路②,且三輛車是否堵車相互之間沒(méi)有影響。
(I)若三輛汽車中恰有一輛汽車被堵的概率為,求走公路②堵的概率;
(II)在(I)的條件下,求三輛汽車中恰有兩輛汽車被堵的概率
(本小題滿分12分)
某校為了探索一種新的教學(xué)模式,進(jìn)行了一項(xiàng)課題實(shí)驗(yàn),乙班為實(shí)驗(yàn)班,甲班為對(duì)比班,甲乙兩班的人數(shù)均為50人,一年后對(duì)兩班進(jìn)行測(cè)試,成績(jī)?nèi)缦卤恚ǹ偡郑?50分):
甲班
成績(jī) |
|||||
頻數(shù) |
4 |
20 |
15 |
10 |
1 |
乙班
成績(jī) |
|||||
頻數(shù) |
1 |
11 |
23 |
13 |
2 |
(Ⅰ)現(xiàn)從甲班成績(jī)位于內(nèi)的試卷中抽取9份進(jìn)行試卷分析,請(qǐng)問(wèn)用什么抽樣方法更合理,并寫出最后的抽樣結(jié)果;
(Ⅱ)根據(jù)所給數(shù)據(jù)可估計(jì)在這次測(cè)試中,甲班的平均分是101.8,請(qǐng)你估計(jì)乙班的平均分,并計(jì)算兩班平均分相差幾分;
(Ⅲ)完成下面2×2列聯(lián)表,你能有97.5%的把握認(rèn)為“這兩個(gè)班在這次測(cè)試中成績(jī)的差異與實(shí)施課題實(shí)驗(yàn)有關(guān)”嗎?并說(shuō)明理由。
|
成績(jī)小于100分[來(lái)源:ZXXK] |
成績(jī)不小于100分 |
合計(jì) |
甲班 |
26 |
50 |
|
乙班 |
12 |
50 |
|
合計(jì) |
36 |
64 |
100 |
附:
0.15 |
0.10 |
0.05[來(lái)源:Z§xx§k.Com] |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841[來(lái)源:Z.xx.k.Com] |
5.024 |
6.635 |
7.879 |
10.828 |
(本小題滿分12分)
某校高二年級(jí)共有1200名學(xué)生,為了分析某一次數(shù)學(xué)考試情況,今抽查100份試卷,成績(jī)分布如下表:
成績(jī) |
|||||||||
人數(shù) |
4 |
5 |
6 |
9 |
21 |
27 |
15 |
9 |
4 |
頻率 |
0.04 |
0.05 |
0.06 |
0.09 |
0.21 |
0.27 |
0.15 |
0.09 |
0.04 |
(Ⅰ)畫(huà)出頻率分布直方圖;
(Ⅱ)由頻率分布表估計(jì)這次考試及格(60分以上為及格)的人數(shù);
(Ⅲ)由頻率分布直方圖估計(jì)這考試的平均分.
(本小題滿分12分)
某學(xué)校要對(duì)學(xué)生進(jìn)行身體素質(zhì)全面測(cè)試,對(duì)每位學(xué)生都要進(jìn)行選考核(即共項(xiàng)測(cè)試,隨機(jī)選取項(xiàng)),若全部合格,則頒發(fā)合格證;若不合格,則重新參加下期的選考核,直至合格為止,若學(xué)生小李抽到“引體向上”一項(xiàng),則第一次參加考試合格的概率為,第二次參加考試合格的概率為,第三次參加考試合格的概率為,若第四次抽到可要求調(diào)換項(xiàng)目,其它選項(xiàng)小李均可一次性通過(guò).
(1)求小李第一次考試即通過(guò)的概率;
(2)求小李參加考核的次數(shù)分布列.
一、選擇題:
1. D 2. B 3. A 4. D 5. C 6. B 7. D 8. A 9. C 10. B 11. A 12. B
二、填空題:
13. 5;14. 18 ;15. 2 ;16. ③④
三、解答題:
17. 解:(1) 由已知得,即,………………2分
所以數(shù)列{}是以1為首項(xiàng),公差2的等差數(shù)列.…………………………4分
故.………………………………………5分
(2) 由(1)知:,從而.…………………………7分
∴………………………………9分
……………………12分
18. 解:(1)……2分
……………………4分
∵∴………………………6分
(2) ∵
∴(k∈Z);…………………… 8分
∴≤x≤(k∈Z);…………………………10分
∴的單調(diào)遞增區(qū)間為[,] (k∈Z)……………………12分
19. (1)解:把4名獲書(shū)法比賽一等獎(jiǎng)的同學(xué)編號(hào)為1,2,3,4,2名獲繪畫(huà)比賽一等獎(jiǎng)的同學(xué)編號(hào)為5,6.從6名同學(xué)中任選兩名的所有可能結(jié)果如下:(1,2),(1,3),(1,4),(1,5), (1,6),(2,3),(2,4),(2,5), (2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15個(gè).…………………4分
(1) 從6名同學(xué)中任選兩名,都是書(shū)法比賽一等獎(jiǎng)的所有可能是:(1,2),(1,3),(1,4), (2,3),(2,4),(3,4),共6個(gè).…………………………6分
∴選出的兩名志愿者都是書(shū)法比賽一等獎(jiǎng)的概率.…………………8分
(2) 從6名同學(xué)中任選兩名,一名是書(shū)法比賽一等獎(jiǎng),另一名是繪畫(huà)比賽一等獎(jiǎng)的所有可能是:(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8個(gè).………………………10分
∴選出的兩名志愿者一名是書(shū)法比賽一等獎(jiǎng),另一名是繪畫(huà)比賽一等獎(jiǎng)的概率是.………………………12分
20. 解:(1) 取AB的中點(diǎn)G,連FG,可得FG∥AE,F(xiàn)G=AE,又CD⊥平面ABC,AE⊥平面ABC,∴CD∥AE,CD=AE………………………2分
∴FG∥CD,F(xiàn)G=CD,∵FG⊥平面ABC……………4分
∴四邊形CDFG是矩形,DF∥CG,CG平面ABC,
DF平面ABC∴DF∥平面ABC…………………6分
(2) Rt△ABE中,AE=
∵△ABC是正三角形,∴CG⊥AB,∴DF⊥AB…………9分
又DF⊥FG,∴DF⊥平面ABE,DF⊥AF,
∴AF⊥平面BDF,∴AF⊥BD.……………………12分
21. 解:(1)與圓相切,則,即,所以,
………………………3分
則由,消去y得: (*)
由Δ=得,∴,………………4分
(2) 設(shè),由(*)得,.…………5分
則
.…………………………6分
由,所以.∴k=±1.
.,∴………………………7分
∴或.…………………8分
(3) 由(2)知:(*)為
由弦長(zhǎng)公式得
… 10分
所以………………………12分
22. (1) 解:設(shè)x∈(0,1],則-x∈[-1,0),∴………………1分
∵是奇函數(shù).∴=………………………2分
∴當(dāng)x∈(0,1]時(shí), ,…………………3分
∴ ………………………………4分
(2) 當(dāng)x∈(0,1]時(shí),∵…………………6分
∵,x∈(0,1],≥1,
∴.………………………7分
即.……………………………8分
∴在(0,1]上是單調(diào)遞增函數(shù).…………………9分
(3) 解:當(dāng)時(shí), 在(0,1]上單調(diào)遞增. ,
∴ (不合題意,舍之),………………10分
當(dāng)時(shí),由,得.……………………………11分
如下表:
1
>0
0
<0
ㄊ
最大值
ㄋ
由表可知: ,解出.……………………12分
此時(shí)∈(0,1)………………………………13分
∴存在,使在(0,1]上有最大值-6.………………………14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com