題目列表(包括答案和解析)
(選修4-4:坐標(biāo)系與參數(shù)方程) (本小題滿分10分)
在直角坐標(biāo)系xoy中,直線的參數(shù)方程為(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為.
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線交于點A、B,若點P的坐標(biāo)為,求|PA|+|PB|.
23(本小題滿分10分)
已知三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,,N為AB上一點,AB=4AN, M、S分別為PB,BC的中點.以A為原點,射線AB,AC,AP分別為x,y,z軸正向建立如圖空間直角坐標(biāo)系.
(Ⅰ)證明:CM⊥SN;
(Ⅱ)求SN與平面CMN所成角的大小.
24.(本小題滿分10分)
將一枚硬幣連續(xù)拋擲次,每次拋擲互不影響. 記正面向上的次數(shù)為奇數(shù)的概率為,正面向上的次數(shù)為偶數(shù)的概率為.
(Ⅰ)若該硬幣均勻,試求與;
(Ⅱ)若該硬幣有暇疵,且每次正面向上的概率為,試比較與的大小.
(選修4-4:坐標(biāo)系與參數(shù)方程) (本小題滿分10分)
在直角坐標(biāo)系xoy中,直線的參數(shù)方程為(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為.
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線交于點A、B,若點P的坐標(biāo)為,求|PA|+|PB|.
23(本小題滿分10分)
已知三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,,N為AB上一點,AB=4AN, M、S分別為PB,BC的中點.以A為原點,射線AB,AC,AP分別為x,y,z軸正向建立如圖空間直角坐標(biāo)系.
(Ⅰ)證明:CM⊥SN;
(Ⅱ)求SN與平面CMN所成角的大小.
24.(本小題滿分10分)
將一枚硬幣連續(xù)拋擲次,每次拋擲互不影響. 記正面向上的次數(shù)為奇數(shù)的概率為,正面向上的次數(shù)為偶數(shù)的概率為.
(Ⅰ)若該硬幣均勻,試求與;
(Ⅱ)若該硬幣有暇疵,且每次正面向上的概率為,試比較與的大小.
選答題(本小題滿分10分)(請考生在第22、23、24三道題中任選一題做答,并用2B鉛筆在答題卡上把所選題目的題號涂黑。注意所做題號必須與所涂題目的題號一致,并在答題卡指定區(qū)域答題。如果多做,則按所做的第一題計分。)
22.選修4-1:幾何證明選講
如圖,已知是⊙的切線,為切點,是⊙的割線,與⊙交于兩點,圓心在的內(nèi)部,點是的中點。
(1)證明四點共圓;
(2)求的大小。
23.選修4—4:坐標(biāo)系與參數(shù)方程[來源:ZXXK]
已知直線經(jīng)過點,傾斜角。
(1)寫出直線的參數(shù)方程;
(2)設(shè)與曲線相交于兩點,求點到兩點的距離之積。
24.選修4—5:不等式證明選講
若不等式與不等式同解,而的解集為空集,求實數(shù)的取值范圍。
選答題(本小題滿分10分)(請考生在第22、23、24三道題中任選一題做答,并用2B鉛筆在答題卡上把所選題目的題號涂黑。注意所做題號必須與所涂題目的題號一致,并在答題卡指定區(qū)域答題。如果多做,則按所做的第一題計分。)
22.選修4-1:幾何證明選講
如圖,已知是⊙的切線,為切點,是⊙的割線,與⊙交于兩點,圓心在的內(nèi)部,點是的中點。
(1)證明四點共圓;
(2)求的大小。
23.選修4—4:坐標(biāo)系與參數(shù)方程[來源:學(xué)科網(wǎng)ZXXK]
已知直線經(jīng)過點,傾斜角。
(1)寫出直線的參數(shù)方程;
(2)設(shè)與曲線相交于兩點,求點到兩點的距離之積。
24.選修4—5:不等式證明選講
若不等式與不等式同解,而的解集為空集,求實數(shù)的取值范圍。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com