23.橢圓的中心在原點0.它的短軸長為.右焦點為.右準線與軸相交于點A.并且. 查看更多

 

題目列表(包括答案和解析)

橢圓C的中心在原點O,焦點在x軸,它的短軸長為2,過焦點與x軸垂直的直線與橢圓C相交于A,B兩點且|AB|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過定點N(1,0)的直線l交橢圓C于C、D兩點,交y軸于點P,若
PC
 1
CN
,
PD
=λ2
DN
,求證:λ12為定值.

查看答案和解析>>

橢圓C的中心在原點O,焦點在x軸,它的短軸長為2,過焦點與x軸垂直的直線與橢圓C相交于A,B兩點且|AB|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過定點N(1,0)的直線l交橢圓C于C、D兩點,交y軸于點P,若
PC
1
CN
,
PD
=λ2
DN
,求證:λ12為定值.

查看答案和解析>>

設橢圓中心在坐標原點,A(2,O)是它的一個頂點,且長軸是短軸的2倍,
(1)求橢圓的標準方程;
(2)若橢圓的焦點在x軸,設直線y=kx(k>0)與橢圓相交于E、F兩點,求四邊形AEBF面積的最大值.

查看答案和解析>>

(08年海淀區(qū)期中練習文)(14分)

已知橢圓的中心是坐標原點,它的短軸長為,右焦點為,右準線軸相交于點,過點的直線與橢圓相交于兩點, 點和點上,且軸.

          (I) 求橢圓的方程及離心率;

          (II)當時,求直線的方程;

    (III)求證:直線經過線段的中點.

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

C

C

A

C

B

C

C

B

B

C

 

二、填空題

13.()  14.x=0或y=0     15.4     16.2/3    17.20   18.①④

 

三、解答題

19.解:A(―4,2)關于直線對稱的點為,因為直線的平分線,可以點在直線上,故直線的方程是,由,,則是以為直角的三角形,10

 

20.解:由,,設雙曲線方程為,橢圓方程為,它們的焦點,則

*,又,,雙曲線方程為,橢圓方程為

 

21.解:,設橢圓方程為①,設過的直線方程為②,將②代入①得③,設,的中點為代入,由③,,解得

 

22.解:⑴設直線方程為:代入,得

,另知直線與半圓相交的條件為,設,則,點位于的右側,應有,即,(亦可求出的橫坐標

⑵若為正,則點到直線距離

矛盾,在⑴條件下不可能是正△.

 

文本框: F223.⑴由題意設橢圓方程為:,則解得: ,所以橢圓方程為:

⑵設“左特征點”,設的平分線,,,下面設直線的方程為,代入得:,代入上式得解得

⑶橢圓的“左特征點”M是橢圓的左準線和x軸的交點證明如下:

證明:設橢圓的左準線與x軸相交于點M,過點A、B分別作的垂線,垂足分別為點C、D。據(jù)橢圓第二定義得,

,∴

均為銳角,∴

。∴的平分線。故點為橢圓的“左特征點”。


同步練習冊答案