(Ⅱ)若.求在[--2.2] 上的最大值和最小值, 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)的最大值為正實(shí)數(shù),集合

,集合

(1)求;

(2)定義的差集:。

設(shè),均為整數(shù),且。取自的概率,取自 的概率,寫(xiě)出的二組值,使,。

(3)若函數(shù)中,, 是(2)中較大的一組,試寫(xiě)出在區(qū)間[,n]上高考資源網(wǎng)的最     大值函數(shù)的表達(dá)式。

查看答案和解析>>

若函數(shù)處取得極值,

(1)求的值;

(2)求上的最大值和最小值.

 

查看答案和解析>>

若函數(shù)在區(qū)間上的最小值為3,

(1)求常數(shù)的值;

(2)求此函數(shù)當(dāng)時(shí)的最大值和最小值,并求相應(yīng)的的取值集合。

 

查看答案和解析>>

若函數(shù)處取得極值,
(1)求的值;
(2)求上的最大值和最小值.

查看答案和解析>>

若函數(shù)在區(qū)間上的最小值為3,
(1)求常數(shù)的值;
(2)求此函數(shù)當(dāng)時(shí)的最大值和最小值,并求相應(yīng)的的取值集合。

查看答案和解析>>

ABCACDCCDB

 2           

        (2,1)È(1,2)     -2

17、解:(Ⅰ)

         

(Ⅱ)

     

18、[解](1)

 

 

 

 

 

 

 

 

 

 

            

      (2)方程的解分別是,由于上單調(diào)遞減,在上單調(diào)遞增,因此

.                        

    由于.                         

  19、解:(Ⅰ)

由方程    ②

因?yàn)榉匠挞谟袃蓚(gè)相等的根,所以

即 

由于代入①得的解析式

   (Ⅱ)由

解得

故當(dāng)的最大值為正數(shù)時(shí),實(shí)數(shù)a的取值范圍是

 

20、解:(Ⅰ)設(shè)函數(shù)的圖象上任意一點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為,則

∵點(diǎn)在函數(shù)的圖象上

(Ⅱ)由

當(dāng)時(shí),,此時(shí)不等式無(wú)解

當(dāng)時(shí),,解得

因此,原不等式的解集為

21、解: (Ⅰ)由原式得

           ∴

(Ⅱ)由,此時(shí)有.

或x=-1 , 又

    所以f(x)在[--2,2]上的最大值為最小值為

   (Ⅲ)解法一: 的圖象為開(kāi)口向上且過(guò)點(diǎn)(0,--4)的拋物線(xiàn),由條件得

   

     即  ∴--2≤a≤2.

     所以a的取值范圍為[--2,2].

  解法二:令 由求根公式得:

    所以上非負(fù).

   由題意可知,當(dāng)x≤-2或x≥2時(shí), ≥0,

  從而x1≥-2,  x2≤2,

   即 解不等式組得: --2≤a≤2.

∴a的取值范圍是[--2,2].

 

 


同步練習(xí)冊(cè)答案