(Ⅰ)填充頻率分布表的空格,(Ⅱ)補(bǔ)全頻數(shù)條形圖, 查看更多

 

題目列表(包括答案和解析)

某班級舉行一次知識競賽活動,活動分為初賽和決賽兩個階段、現(xiàn)將初賽答卷成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表.

(1)填充頻率分布表中的空格(在解答中直接寫出對應(yīng)空格序號的答案);
(2)決賽規(guī)則如下:參加決賽的每位同學(xué)依次口答4道小題,答對2道題就終止答題,并獲得一等獎.如果前三道題都答錯,就不再答第四題.某同學(xué)進(jìn)入決賽,每道題答對的概率P的值恰好與頻率分布表中不少于80分的頻率的值相同.
①求該同學(xué)恰好答滿4道題而獲得一等獎的概率;
②記該同學(xué)決賽中答題個數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

為了讓學(xué)生更多的了解“數(shù)學(xué)史”知識,某班級舉辦一次“追尋先哲的足跡,傾聽數(shù)學(xué)的聲音”的數(shù)學(xué)史知識競賽活動.現(xiàn)將初賽答卷成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表:
(Ⅰ)填充頻率分布表中的空格(在解答中直接寫出對應(yīng)空格序號的答案);
(Ⅱ)決賽規(guī)則如下:為每位參加決賽的選手準(zhǔn)備4道判斷題,選手對其依次口答,答對兩道就終止答題,并獲得一等獎,若題目答完仍然只答對1道,則獲得二等獎。
某同學(xué)進(jìn)入決賽,每道題答對的概率p的值恰好與頻率分布表中不少于80分的頻率的值相同。
(ⅰ)求該同學(xué)恰好答滿4道題而獲得一等獎的概率;
(ⅱ)設(shè)該同學(xué)決定中答題個數(shù)為X,求X的分布列及X的數(shù)學(xué)期望。

查看答案和解析>>

為了讓學(xué)生更多的了解“數(shù)學(xué)史”知識,某班級舉辦一次“追尋先哲的足跡,傾聽數(shù)學(xué)的聲音”的數(shù)學(xué)史知識競賽活動.現(xiàn)將初賽答卷成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表:
精英家教網(wǎng)
(1)填充頻率分布表中的空格(在解答中直接寫出對應(yīng)空格序號的答案);
(2)決賽規(guī)則如下:為每位參加決賽的選手準(zhǔn)備4道判斷題,選手對其依次口答,答對兩道就終止答題,并獲得一等獎,若題目答完仍然只答對l道,則獲得二等獎.某同學(xué)進(jìn)入決賽,每道題答對的概率p的值恰好與頻率分布表中不少于80分的頻率值相同.
(i)求該同學(xué)恰好答滿4道題而獲得一等獎的概率;
(ii)設(shè)該同學(xué)決賽中答題個數(shù)為X,求X的分布列及X的數(shù)學(xué)期望.

查看答案和解析>>

為了讓學(xué)生更多的了解“數(shù)學(xué)史”知識,某班級舉辦一次“追尋先哲的足跡,傾聽數(shù)學(xué)的聲音”的數(shù)學(xué)史知識競賽活動.現(xiàn)將初賽答卷成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表:

(1)填充頻率分布表中的空格(在解答中直接寫出對應(yīng)空格序號的答案);
(2)決賽規(guī)則如下:為每位參加決賽的選手準(zhǔn)備4道判斷題,選手對其依次口答,答對兩道就終止答題,并獲得一等獎,若題目答完仍然只答對l道,則獲得二等獎.某同學(xué)進(jìn)入決賽,每道題答對的概率p的值恰好與頻率分布表中不少于80分的頻率值相同.
(i)求該同學(xué)恰好答滿4道題而獲得一等獎的概率;
(ii)設(shè)該同學(xué)決賽中答題個數(shù)為X,求X的分布列及X的數(shù)學(xué)期望.

查看答案和解析>>

為了讓學(xué)生更多的了解“數(shù)學(xué)史”知識,某班級舉辦一次“追尋先哲的足跡,傾聽數(shù)學(xué)的聲音”的數(shù)學(xué)史知識競賽活動.現(xiàn)將初賽答卷成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表:

(1)填充頻率分布表中的空格(在解答中直接寫出對應(yīng)空格序號的答案);
(2)決賽規(guī)則如下:為每位參加決賽的選手準(zhǔn)備4道判斷題,選手對其依次口答,答對兩道就終止答題,并獲得一等獎,若題目答完仍然只答對l道,則獲得二等獎.某同學(xué)進(jìn)入決賽,每道題答對的概率p的值恰好與頻率分布表中不少于80分的頻率值相同.
(i)求該同學(xué)恰好答滿4道題而獲得一等獎的概率;
(ii)設(shè)該同學(xué)決賽中答題個數(shù)為X,求X的分布列及X的數(shù)學(xué)期望.

查看答案和解析>>

一、選擇題(8小題,每題5分,共40分)

題號

1

2

3

4

5

6

7

8

9

10

答案

D

B

B

B

A

C

D

B

A

D

二、填空題(6小題,每題5分,共30分)

            

11. 5 ;    12.       13.15 ; 15         14。2;   15.

三、解答題(6小題,共80分)

16.解:(1)

 

----------------5分

 

    因?yàn)樽钚≌芷跒?sub>,∴        ,∴;----------6分

 

(2)由(1)知                   ,

 

因?yàn)?sub>,∴-------------------8分

因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/667d7a5cb647f84a4c5d5bbfc63676df.zip/65334/東中分校2009屆高三上學(xué)期期末考試數(shù)學(xué)文科試題.files/image239.gif" >             ,∴                   

 

所以----------------10分

     所以         或       .------------------12分

 

17.解:(1)已知函數(shù),       ------2   

又函數(shù)圖象在點(diǎn)處的切線與直線平行,且函數(shù)處取得極值,,且,解得

,且   --------------5分     

,        

所以函數(shù)的單調(diào)遞減區(qū)間為  -----------------8分           

(2)當(dāng)時,,又函數(shù)上是減函數(shù)

上恒成立,   --------------10分 

上恒成立。----------------12分

 

18.解:(1)

分組

頻數(shù)

頻率

50.5~60.5

4

0.08

60.5~70.5

8

0.16

70.5~80.5

10

0.20

80.5~90.5

16

0.32

90.5~100.5

12

0.24

合計(jì)

50

1.00

 

 

 

---------------------4分

(2) 頻數(shù)直方圖如右上所示--------------------------------8分

(3) 成績在75.5~80.5分的學(xué)生占70.5~80.5分的學(xué)生的,因?yàn)槌煽冊?0.5~80.5分的學(xué)生頻率為0.2 ,所以成績在76.5~80.5分的學(xué)生頻率為0.1 ,---------10分

成績在80.5~85.5分的學(xué)生占80.5~90.5分的學(xué)生的,因?yàn)槌煽冊?0.5~90.5分的學(xué)生頻率為0.32 ,所以成績在80.5~85.5分的學(xué)生頻率為0.16  -------------12分

所以成績在76.5~85.5分的學(xué)生頻率為0.26,

由于有900名學(xué)生參加了這次競賽,

所以該校獲得二等獎的學(xué)生約為0.26´900=234(人)    -------------14分

19.解(Ⅰ)證明:∵PA⊥底面ABCD,MN底面ABCD

∴MN⊥PA   又MN⊥AD   且PA∩AD=A

∴MN⊥平面PAD  ………………3分

MN平面PMN   ∴平面PMN⊥平面PAD  …………4分

(Ⅱ)∵BC⊥BA   BC⊥PA   PA∩BA=A   ∴BC⊥平面PBA

∴∠BPC為直線PC與平面PBA所成的角  即…………7分

在Rt△PBC中,PC=BC/sin∠BPC=


  ………………10分

(Ⅲ)由(Ⅰ)MN⊥平面PAD知   PM⊥MN   MQ⊥MN

∴∠PMQ即為二面角P―MN―Q的平面角  …………12分

      ∴   …………14分

20.(14分)

解(1),動圓的半徑為r,則|PQ1|=r+3,

|PQ2|= r+1,|PQ1|-|PQ2|=2,…………………3分

點(diǎn)P的軌跡是以O1O2為焦點(diǎn)的雙曲線右支,a=1,c=2,

方程為………………………………………………6分

   (2)設(shè)Px1,y1),Qx2,y2),當(dāng)k不存在時,不合題意.

       直線PQ的方程為y=kx-3),

       ………………8分

       由

       、

       …………………………………………………………10分

       …………14分

 

 

 

 

 

 

21.  (1)設(shè)----------------3

,又

---------------------------------5

(2)由已知得

兩式相減得,-------------------------7

當(dāng).若

-------------------------------9

(3) 由,

.-----------------------------------11分

------------------------------13

可知,-------------------------------14. 分

 

 


同步練習(xí)冊答案