13.已知x.y滿足條件.若z=x+3y的最大值為8.則k= . 查看更多

 

題目列表(包括答案和解析)

已知f(x)=a2x-
1
2
x3,x∈(-2,2)為正常數(shù).
(1)可以證明:定理“若a、b∈R*,則
a+b
2
ab
(當(dāng)且僅當(dāng)a=b時取等號)”推廣到三個正數(shù)時結(jié)論是正確的,試寫出推廣后的結(jié)論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實(shí)數(shù)a的取值范圍,并由此猜測y=f(x)的單調(diào)性(無需證明);
(3)對滿足(2)的條件的一個常數(shù)a,設(shè)x=x1時,f(x)取得最大值.試構(gòu)造一個定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當(dāng)x∈(-2,2)時,g(x)=f(x),當(dāng)x∈D時,g(x)取得最大值的自變量的值構(gòu)成以x1為首項的等差數(shù)列.

查看答案和解析>>

已知f(x)=a2x-
1
2
x3,x∈(-2,2)為正常數(shù).
(1)可以證明:定理“若a、b∈R*,則
a+b
2
ab
(當(dāng)且僅當(dāng)a=b時取等號)”推廣到三個正數(shù)時結(jié)論是正確的,試寫出推廣后的結(jié)論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實(shí)數(shù)a的取值范圍,并由此猜測y=f(x)的單調(diào)性(無需證明);
(3)對滿足(2)的條件的一個常數(shù)a,設(shè)x=x1時,f(x)取得最大值.試構(gòu)造一個定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當(dāng)x∈(-2,2)時,g(x)=f(x),當(dāng)x∈D時,g(x)取得最大值的自變量的值構(gòu)成以x1為首項的等差數(shù)列.

查看答案和解析>>

已知f(x)=a2x-x3,x∈(-2,2)為正常數(shù).
(1)可以證明:定理“若a、b∈R*,則(當(dāng)且僅當(dāng)a=b時取等號)”推廣到三個正數(shù)時結(jié)論是正確的,試寫出推廣后的結(jié)論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實(shí)數(shù)a的取值范圍,并由此猜測y=f(x)的單調(diào)性(無需證明);
(3)對滿足(2)的條件的一個常數(shù)a,設(shè)x=x1時,f(x)取得最大值.試構(gòu)造一個定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當(dāng)x∈(-2,2)時,g(x)=f(x),當(dāng)x∈D時,g(x)取得最大值的自變量的值構(gòu)成以x1為首項的等差數(shù)列.

查看答案和解析>>

已知f(x)=a2x-x3,x∈(-2,2)為正常數(shù).
(1)可以證明:定理“若a、b∈R*,則(當(dāng)且僅當(dāng)a=b時取等號)”推廣到三個正數(shù)時結(jié)論是正確的,試寫出推廣后的結(jié)論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實(shí)數(shù)a的取值范圍,并由此猜測y=f(x)的單調(diào)性(無需證明);
(3)對滿足(2)的條件的一個常數(shù)a,設(shè)x=x1時,f(x)取得最大值.試構(gòu)造一個定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當(dāng)x∈(-2,2)時,g(x)=f(x),當(dāng)x∈D時,g(x)取得最大值的自變量的值構(gòu)成以x1為首項的等差數(shù)列.

查看答案和解析>>

已知點(diǎn)P(x,y)滿足條件
y≥0
y≤x
2x+y+k≤0
(k為常數(shù),且k∈R)
,若zmx+3y的最大值為8,則實(shí)數(shù)k等于(  )
A、-6B、-16C、6D、16

查看答案和解析>>

一、選擇題

1.B  2.A  3.C  4.B  5.B  6.D  7.C  8.C  9.D  10.A

二、填空題

11.  12.  13.-6  14.;  15.①②③④

三、解答題

16.解:⑴

                                                                                                                  3分

=1+1+2cos2x=2+2cos2x=4cos2x

∵x∈[0,]  ∴cosx≥0

=2cosx                                                                                                     6分

⑵ f (x)=cos2x-?2cosx?sinx=cos2x-sin2x

      =2cos(2x+)                                                                                            8分

∵0≤x≤  ∴  ∴  ∴

,當(dāng)x=時取得該最小值

 ,當(dāng)x=0時取得該最大值                                                                    12分

17.由題意知,在甲盒中放一球概率為時,在乙盒放一球的概率為                  2分

①當(dāng)n=3時,x=3,y=0的概率為                                                 4分

②當(dāng)n=4時,x+y=4,又|x-y|=ξ,所以ξ的可能取值為0,2,4

(i)當(dāng)ξ=0時,有x=2,y=2,它的概率為                                      4分

(ii)當(dāng)ξ=2時,有x=3,y=1或x=1,y=3

   它的概率為

(iii)當(dāng)ξ=4時,有x=4,y=0或x=0,y=4

   它的概率為

故ξ的分布列為

ξ

0

2

4

10分

p

∴ξ的數(shù)學(xué)期望Eξ=                                                             12分

18.解:⑴證明:在正方形ABCD中,AB⊥BC

又∵PB⊥BC  ∴BC⊥面PAB  ∴BC⊥PA

同理CD⊥PA  ∴PA⊥面ABCD    4分

⑵在AD上取一點(diǎn)O使AO=AD,連接E,O,

則EO∥PA,∴EO⊥面ABCD 過點(diǎn)O做

OH⊥AC交AC于H點(diǎn),連接EH,則EH⊥AC,

從而∠EHO為二面角E-AC-D的平面角                                                             6分

在△PAD中,EO=AP=在△AHO中∠HAO=45°,

∴HO=AOsin45°=,∴tan∠EHO=

∴二面角E-AC-D等于arctan                                                                    8分

⑶當(dāng)F為BC中點(diǎn)時,PF∥面EAC,理由如下:

∵AD∥2FC,∴,又由已知有,∴PF∥ES

∵PF面EAC,EC面EAC  ∴PF∥面EAC,

即當(dāng)F為BC中點(diǎn)時,PF∥面EAC                                                                         12分

19.⑴據(jù)題意,得                                                4分

                                                                          5分

⑵由⑴得:當(dāng)5<x<7時,y=39(2x3-39x2+252x-535)

當(dāng)5<x<6時,y'>0,y=f (x)為增函數(shù)

當(dāng)6<x<7時,y'<0,y=f (x)為減函數(shù)

∴當(dāng)x=6時,f (x)極大值=f (16)=195                                                                      8分

當(dāng)7≤x<8時,y=6(33-x)∈(150,156]

當(dāng)x≥8時,y=-10(x-9)2+160

當(dāng)x=9時,y極大=160                                                                                           10分

綜上知:當(dāng)x=6時,總利潤最大,最大值為195                                                     12分

20.⑴設(shè)M(x0,y0),則N(x0,-y0),P(x,y)

        1. (x0≠-1且x0≠3)

          BN:y=  、

          聯(lián)立①②  ∴                                                                                        4分

          ∵點(diǎn)M(xo,yo)在圓⊙O上,代入圓的方程:

          整理:y2=-2(x+1)  (x<-1)                                                                             6分

          ⑵由

          設(shè)S(x1、y1),T(x2、y2),ST的中點(diǎn)坐標(biāo)(x0、y0)

          則x1+x2=-(3+)

          x1x2                                                                                                           8分

          中點(diǎn)到直線的距離

          故圓與x=-總相切.                                                                                         13分

          ⑵另解:∵y2=-2(x+1)知焦點(diǎn)坐標(biāo)為(-,0)                                                   2分

          頂點(diǎn)(-1,0),故準(zhǔn)線x=-                                                                               4分

          設(shè)S、T到準(zhǔn)線的距離為d1,d2,ST的中點(diǎn)O',O'到x=-的距離為

          又由拋物線定義:d1+d2=|ST|,∴

          故以ST為直徑的圓與x=-總相切                                                                      8分

          21.解:⑴由,得

          ,有

              =

              =

          又b12a1=2,                                                                               3分

                                                                                              4分

          ⑵證法1:(數(shù)學(xué)歸納法)

          1°,當(dāng)n=1時,a1=1,滿足不等式                                                    5分

          2°,假設(shè)n=k(k≥1,k∈N*)時結(jié)論成立

          ,那么

                                                                                                                 7分

          由1°,2°可知,n∈N*,都有成立                                                           9分

          ⑵證法2:由⑴知:                (可參照給分)

          ,,∴

            ∵

            ∴

          當(dāng)n=1時,,綜上

          ⑵證法3:

          ∴{an}為遞減數(shù)列

          當(dāng)n=1時,an取最大值  ∴an≤1

          由⑴中知  

          綜上可知

          欲證:即證                                                                             11分

          即ln(1+Tn)-Tn<0,構(gòu)造函數(shù)f (x)=ln(1+x)-x

          當(dāng)x>0時,f ' (x)<0

          ∴函數(shù)y=f (x)在(0,+∞)內(nèi)遞減

          ∴f (x)在[0,+∞)內(nèi)的最大值為f (0)=0

          ∴當(dāng)x≥0時,ln(1+x)-x≤0

          又∵Tn>0,∴l(xiāng)n(1+Tn)-Tn<0

          ∴不等式成立                                                                                           14分

           


          同步練習(xí)冊答案