⑵數(shù)列是等方差數(shù)列,⑶若數(shù)列{an}既是等方差數(shù)列.又是等差數(shù)列.則該數(shù)列必為常數(shù)列,⑷若數(shù)列{an}是等方差數(shù)列.則數(shù)列{akn}也是等方差數(shù)列.則正確命題序號為 . 查看更多

 

題目列表(包括答案和解析)

若數(shù)列{an}滿足(d為正常數(shù),n∈N+),則稱{an}為“等方差數(shù)列”.甲:數(shù)列{an}為等方差數(shù)列;乙:數(shù)列{an}為等差數(shù)列,則甲是乙的( )
A.充分不必條件
B.必不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

若數(shù)列{an}滿足an+12-an2=d(其中d是常數(shù),n∈N*),則稱數(shù)列{an}是“等方差數(shù)列”
甲:數(shù)列{an}為等方差數(shù)列;乙:數(shù)列{an}為等差數(shù)列,則甲是乙的

[     ]

A.充分不必條件
B.必不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

在數(shù)列{an}中,若an2-an-12=p(n≥2,n∈N×,p為常數(shù)),則稱{an}為“等方差數(shù)列”,下列是對“等方差數(shù)列”的判斷;
①若{an}是等方差數(shù)列,則{an2}是等差數(shù)列;
②{(-1)n}是等方差數(shù)列;
③若{an}是等方差數(shù)列,則{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列;
④若{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列為常數(shù)列.
其中正確命題序號為
 
.(將所有正確的命題序號填在橫線上)

查看答案和解析>>

在數(shù)列{an}中,都有an2-an-12=p(n≥2,n∈N*)(p為常數(shù)),則稱{an}為“等方差數(shù)列”.下列是對“等方差數(shù)列”的判斷:
(1)數(shù)列{(-1)n}是等方差數(shù)列;
(2)數(shù)列{an}是等方差數(shù)列,則數(shù)列{an2}也是等方差數(shù)列;
(3)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列必為常數(shù)列;
(4)若數(shù)列{an}是等方差數(shù)列,則數(shù)列{akn}(k為常數(shù),k∈N*)也是等方差數(shù)列.
則正確命題序號為
 

查看答案和解析>>

在數(shù)列{an}中,若an2-an-12=p(n≥2,n∈N*,p為常數(shù)),則稱{an}為“等方差數(shù)列”,下列是對“等方差數(shù)列”的判斷;
①若{an}是等方差數(shù)列,則{an2}是等差數(shù)列;
②{(-1)n}是等方差數(shù)列;
③若{an}是等方差數(shù)列,則{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列;
④若{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列為常數(shù)列.
其中正確命題序號為(  )
A、①②③B、①②④C、①②③④D、②③④

查看答案和解析>>

一、選擇題

1.B  2.A  3.C  4.B  5.B  6.D  7.C  8.C  9.D  10.A

二、填空題

11.  12.  13.-6  14.;  15.①②③④

三、解答題

16.解:⑴

                                                                                                                  3分

=1+1+2cos2x=2+2cos2x=4cos2x

∵x∈[0,]  ∴cosx≥0

=2cosx                                                                                                     6分

⑵ f (x)=cos2x-?2cosx?sinx=cos2x-sin2x

      =2cos(2x+)                                                                                            8分

∵0≤x≤  ∴  ∴  ∴

,當x=時取得該最小值

 ,當x=0時取得該最大值                                                                    12分

17.由題意知,在甲盒中放一球概率為時,在乙盒放一球的概率為                  2分

①當n=3時,x=3,y=0的概率為                                                 4分

②當n=4時,x+y=4,又|x-y|=ξ,所以ξ的可能取值為0,2,4

(i)當ξ=0時,有x=2,y=2,它的概率為                                      4分

(ii)當ξ=2時,有x=3,y=1或x=1,y=3

   它的概率為

(iii)當ξ=4時,有x=4,y=0或x=0,y=4

   它的概率為

故ξ的分布列為

ξ

0

2

4

10分

p

∴ξ的數(shù)學期望Eξ=                                                             12分

18.解:⑴證明:在正方形ABCD中,AB⊥BC

又∵PB⊥BC  ∴BC⊥面PAB  ∴BC⊥PA

同理CD⊥PA  ∴PA⊥面ABCD    4分

⑵在AD上取一點O使AO=AD,連接E,O,

則EO∥PA,∴EO⊥面ABCD 過點O做

OH⊥AC交AC于H點,連接EH,則EH⊥AC,

從而∠EHO為二面角E-AC-D的平面角                                                             6分

在△PAD中,EO=AP=在△AHO中∠HAO=45°,

∴HO=AOsin45°=,∴tan∠EHO=,

∴二面角E-AC-D等于arctan                                                                    8分

⑶當F為BC中點時,PF∥面EAC,理由如下:

∵AD∥2FC,∴,又由已知有,∴PF∥ES

∵PF面EAC,EC面EAC  ∴PF∥面EAC,

即當F為BC中點時,PF∥面EAC                                                                         12分

19.⑴據(jù)題意,得                                                4分

                                                                          5分

⑵由⑴得:當5<x<7時,y=39(2x3-39x2+252x-535)

當5<x<6時,y'>0,y=f (x)為增函數(shù)

當6<x<7時,y'<0,y=f (x)為減函數(shù)

∴當x=6時,f (x)極大值=f (16)=195                                                                      8分

當7≤x<8時,y=6(33-x)∈(150,156]

當x≥8時,y=-10(x-9)2+160

當x=9時,y極大=160                                                                                           10分

綜上知:當x=6時,總利潤最大,最大值為195                                                     12分

20.⑴設M(x0,y0),則N(x0,-y0),P(x,y)

<dl id="zh6fe"><address id="zh6fe"></address></dl>

        (x0≠-1且x0≠3)

        BN:y=  、

        聯(lián)立①②  ∴                                                                                        4分

        ∵點M(xo,yo)在圓⊙O上,代入圓的方程:

        整理:y2=-2(x+1)  (x<-1)                                                                             6分

        ⑵由

        設S(x1、y1),T(x2、y2),ST的中點坐標(x0、y0)

        則x1+x2=-(3+)

        x1x2                                                                                                           8分

        中點到直線的距離

        故圓與x=-總相切.                                                                                         13分

        ⑵另解:∵y2=-2(x+1)知焦點坐標為(-,0)                                                   2分

        頂點(-1,0),故準線x=-                                                                               4分

        設S、T到準線的距離為d1,d2,ST的中點O',O'到x=-的距離為

        又由拋物線定義:d1+d2=|ST|,∴

        故以ST為直徑的圓與x=-總相切                                                                      8分

        21.解:⑴由,得

        ,有

            =

            =

        又b12a1=2,                                                                               3分

                                                                                            4分

        ⑵證法1:(數(shù)學歸納法)

        1°,當n=1時,a1=1,滿足不等式                                                    5分

        2°,假設n=k(k≥1,k∈N*)時結(jié)論成立

        ,那么

                                                                                                               7分

        由1°,2°可知,n∈N*,都有成立                                                           9分

        ⑵證法2:由⑴知:                (可參照給分)

        ,,∴

          ∵

          ∴

        當n=1時,,綜上

        ⑵證法3:

        ∴{an}為遞減數(shù)列

        當n=1時,an取最大值  ∴an≤1

        由⑴中知  

        綜上可知

        欲證:即證                                                                             11分

        即ln(1+Tn)-Tn<0,構(gòu)造函數(shù)f (x)=ln(1+x)-x

        當x>0時,f ' (x)<0

        ∴函數(shù)y=f (x)在(0,+∞)內(nèi)遞減

        ∴f (x)在[0,+∞)內(nèi)的最大值為f (0)=0

        ∴當x≥0時,ln(1+x)-x≤0

        又∵Tn>0,∴l(xiāng)n(1+Tn)-Tn<0

        ∴不等式成立                                                                                           14分

         


        同步練習冊答案