題目列表(包括答案和解析)
(本小題滿分12分)如圖,四棱錐的底面是矩形,
底面,P為BC邊的中點,SB與
平面ABCD所成的角為45°,且AD=2,SA=1.
(1)求證:平面SAP;
(2)求二面角A-SD-P的大小.
(本小題滿分12分)
如圖,在四棱錐P-ABCD中,PB⊥底面,CD⊥PD,底面ABCD為直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,點E在棱PA上,且PE=2EA。(1)求異面直線PA與CD所成的角;(2)求證:PC∥平面EBD;(3)求二面角A-BE-D的大小。
(本小題滿分12分)
如圖,在四棱錐P-ABCD中,底面為正文形,PA平面ABCD,且PA=AD,E為棱PC上的一點,PD平面ABE
(I)求證:E為PC的中點
(II)若N為CD中點,M為AB上的動點,當直線MN與平面ABE所成的角最大時,求二面角C-EM—N的大小
(本小題滿分12分)如圖,四棱錐P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90o,PA⊥底面ABCD,PA=AB=AD=2,BC=1,E為PD的中點.
(1) 求證:CE∥平面PAB;
(2) 求PA與平面ACE所成角的大。
(3) 求二面角E-AC-D的大。
(本小題滿分12分)
已知一四棱錐P-ABCD的三視圖如下,E是側棱PC上的動點。
(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)當點E在何位置時,BD⊥AE?證明你的結論;
(Ⅲ)若點E為PC的中點,求二面角D-AE-B的大。
一、選擇題
1.B 2.A 3.C 4.B 5.B 6.D 7.C 8.C 9.D 10.A
二、填空題
11. 12. 13.-6 14.; 15.①②③④
三、解答題
16.解:⑴===
= 3分
==1+1+2cos2x=2+2cos2x=4cos2x
∵x∈[0,] ∴cosx≥0
∴=2cosx 6分
⑵ f (x)=cos2x-?2cosx?sinx=cos2x-sin2x
=2cos(2x+) 8分
∵0≤x≤ ∴ ∴ ∴
∴,當x=時取得該最小值
,當x=0時取得該最大值 12分
17.由題意知,在甲盒中放一球概率為時,在乙盒放一球的概率為 2分
①當n=3時,x=3,y=0的概率為 4分
②當n=4時,x+y=4,又|x-y|=ξ,所以ξ的可能取值為0,2,4
(i)當ξ=0時,有x=2,y=2,它的概率為 4分
(ii)當ξ=2時,有x=3,y=1或x=1,y=3
它的概率為
(iii)當ξ=4時,有x=4,y=0或x=0,y=4
它的概率為
故ξ的分布列為
ξ
0
2
4
10分
p
∴ξ的數(shù)學期望Eξ= 12分
18.解:⑴證明:在正方形ABCD中,AB⊥BC
又∵PB⊥BC ∴BC⊥面PAB ∴BC⊥PA
同理CD⊥PA ∴PA⊥面ABCD 4分
⑵在AD上取一點O使AO=AD,連接E,O,
則EO∥PA,∴EO⊥面ABCD 過點O做
OH⊥AC交AC于H點,連接EH,則EH⊥AC,
從而∠EHO為二面角E-AC-D的平面角 6分
在△PAD中,EO=AP=在△AHO中∠HAO=45°,
∴HO=AOsin45°=,∴tan∠EHO=,
∴二面角E-AC-D等于arctan 8分
⑶當F為BC中點時,PF∥面EAC,理由如下:
∵AD∥2FC,∴,又由已知有,∴PF∥ES
∵PF面EAC,EC面EAC ∴PF∥面EAC,
即當F為BC中點時,PF∥面EAC 12分
19.⑴據(jù)題意,得 4分
5分
⑵由⑴得:當5<x<7時,y=39(2x3-39x2+252x-535)
當5<x<6時,y'>0,y=f (x)為增函數(shù)
當6<x<7時,y'<0,y=f (x)為減函數(shù)
∴當x=6時,f (x)極大值=f (16)=195 8分
當7≤x<8時,y=6(33-x)∈(150,156]
當x≥8時,y=-10(x-9)2+160
當x=9時,y極大=160 10分
綜上知:當x=6時,總利潤最大,最大值為195 12分
20.⑴設M(x0,y0),則N(x0,-y0),P(x,y)
|