⑵設(shè)動直線l:y=k(x+)與曲線C交于S.T兩點. 查看更多

 

題目列表(包括答案和解析)

已知動圓C過點A(-2,0),且與圓M:(x-2)2+y2=64相內(nèi)切.

(1)求動圓C的圓心的軌跡方程;

(2)設(shè)直線l:y=kx+m(其中k,m∈Z)與(1)所求軌跡交于不同兩點B,D,與雙曲線交于不同兩點E,F(xiàn),問是否存在直線l,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

查看答案和解析>>

已知動圓C過點A(-2,0),且與圓M:(x-2)2+y2=64相內(nèi)切.

(1)求動圓C的圓心的軌跡方程;

(2)設(shè)直線l:y=kx+m(其中k,m∈Z)與(1)所求軌跡交于不同兩點B,D,與雙曲線交于不同兩點E,F(xiàn),問是否存在直線l,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

查看答案和解析>>

已知動圓C過點A(-2,0),且與圓M:(x-2)2+y2=64相內(nèi)切.

(1)求動圓C的圓心的軌跡方程;

(2)設(shè)直線l:y=kx+m(其中k,m∈Z與(1)中所求軌跡交于不同兩點B,D,與雙曲線交于不同兩點E,F(xiàn),問是否存在直線l,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

查看答案和解析>>

(本小題16分)已知點A(-1, 0)、B(1, 0),△ABC的周長為2+2.記動點C的軌跡

為曲線W.

(1)直接寫出W的方程(不寫過程);

(2)經(jīng)過點(0, )且斜率為k的直線l與曲線W 有兩個不同的交點P和Q,是否存在常數(shù)k,使得向量與向量共線?如果存在,求出k的值;如果不存在,請說明理由.

(3)設(shè)W的左右焦點分別為F1、 F2,點R在直線l:x-y+8=0上.當(dāng)∠F1RF2取最大值時,求的值.

查看答案和解析>>

已知橢圓=1(a>b>0),點P為其上一點,F(xiàn)1,F(xiàn)2為橢圓的焦點,∠F1PF2的外角平分線為l,點F2關(guān)于l的對稱點為Q,F(xiàn)2Q交l于點R.

(1)當(dāng)P點在橢圓上運動時,求R形成的軌跡方程;

(2)設(shè)點R形成的曲線為C,直線l:y=k(x+a)與曲線C相交于A,B兩點,當(dāng)△AOB的面積取得最大值時,求k的值.

查看答案和解析>>

一、選擇題

1.D  2.A  3.C  4.D  5.B  6.C  7.D  8.B  9.A  10.A

二、填空題

11.148  12.-4  13.  14.-6  15.①②③④

三、解答題

16.解:⑴

                                                                                                                 3分

=1+1+2cos2x

=2+2cos2x

=4cos2x

∵x∈[0,]  ∴cosx≥0

=2cosx                                                                                                    6分

⑵ f (x)=cos2x-?2cosx?sinx

      =cos2x-sin2x

      =2cos(2x+)                                                                                           8分

∵0≤x≤  ∴

  ∴

,當(dāng)x=時取得該最小值

 ,當(dāng)x=0時取得該最大值                                                                  12分

17.由題意知,在甲盒中放一球概率為,在乙盒放一球的概率為                    3分

①當(dāng)n=3時,x=3,y=0的概率為                                              6分

②|x-y|=2時,有x=3,y=1或x=1,y=3

它的概率為                                                                12分

18.解:⑴證明:在正方形ABCD中,AB⊥BC

又∵PB⊥BC  ∴BC⊥面PAB  ∴BC⊥PA

同理CD⊥PA  ∴PA⊥面ABCD    4分

⑵在AD上取一點O使AO=AD,連接E,O,

則EO∥PA,∴EO⊥面ABCD 過點O做

OH⊥AC交AC于H點,連接EH,則EH⊥AC,

從而∠EHO為二面角E-AC-D的平面角                                                             6分

在△PAD中,EO=AP=在△AHO中∠HAO=45°,

∴HO=AOsin45°=,∴tan∠EHO=,

∴二面角E-AC-D等于arctan                                                                   8分

⑶當(dāng)F為BC中點時,PF∥面EAC,理由如下:

∵AD∥2FC,∴,又由已知有,∴PF∥ES

∵PF面EAC,EC面EAC  ∴PF∥面EAC,

即當(dāng)F為BC中點時,PF∥面EAC                                                                         12分

19.⑴f '(x)=3x2+2bx+c,由題知f '(1)=03+2b+c=0,

f (1)=-11+b+c+2=-1

∴b=1,c=-5                                                                                                    3分

f (x)=x3+x2-5x+2,f '(x)=3x2+2x-5

f (x)在[-,1]為減函數(shù),f (x)在(1,+∞)為增函數(shù)

∴b=1,c=-5符合題意                                                                                      5分

⑵即方程:恰有三個不同的實解:

x3+x2-5x+2=k(x≠0)

即當(dāng)x≠0時,f (x)的圖象與直線y=k恰有三個不同的交點,

由⑴知f (x)在為增函數(shù),

f (x)在為減函數(shù),f (x)在(1,+∞)為增函數(shù),

,f (1)=-1,f (2)=2

且k≠2                                                                                               12分

20.⑴∵

                                                                                         3分

∴{an-3n}是以首項為a1-3=2,公比為-2的等比數(shù)列

∴an-3n=2?(-2)n1

∴an=3n+2?(-2)n1=3n-(-2)n                                                                        6分

⑵由3nbn=n?(3n-an)=n?[3n-3n+(-2)n]=n?(-2)n

∴bn=n?(-)n                                                                                                    8分

<6

∴m≥6                                                                                                                   13分

21.⑴設(shè)M(x0,y0),則N(x0,-y0),P(x,y)

AM:y=   ①

BN:y=  、

聯(lián)立①②  ∴                                                                                      4分

∵點M(xo,yo)在圓⊙O上,代入圓的方程:

整理:y2=-2(x+1)  (x<-1)                                                                             6分

⑵由

設(shè)S(x1、y1),T(x2、y2),ST的中點坐標(biāo)(x0、y0)

則x1+x2=-(3+)

x1x2                                                                                                          8分

中點到直線的距離

故圓與x=-總相切.                                                                                        14分

⑵另解:∵y2=-2(x+1)知焦點坐標(biāo)為(-,0)                                                  2分

頂點(-1,0),故準(zhǔn)線x=-                                                                              4分

設(shè)S、T到準(zhǔn)線的距離為d1,d2,ST的中點O',O'到x=-的距離為

又由拋物線定義:d1+d2=|ST|,∴

故以ST為直徑的圓與x=-總相切                                                                      8分

 


同步練習(xí)冊答案