(1) 且,相減得: ,() 查看更多

 

題目列表(包括答案和解析)

(2013•東莞二模)已知函數(shù)g(x)=
1
3
ax3+2x2-2x
,函數(shù)f(x)是函數(shù)g(x)的導(dǎo)函數(shù).
(1)若a=1,求g(x)的單調(diào)減區(qū)間;
(2)若對(duì)任意x1,x2∈R且x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2
,求實(shí)數(shù)a的取值范圍;
(3)在第(2)問求出的實(shí)數(shù)a的范圍內(nèi),若存在一個(gè)與a有關(guān)的負(fù)數(shù)M,使得對(duì)任意x∈[M,0]時(shí)|f(x)|≤4恒成立,求M的最小值及相應(yīng)的a值.

查看答案和解析>>

(本小題滿分12分)已知函數(shù))為偶函數(shù),且函數(shù)圖象的兩相鄰對(duì)稱軸間的距離為

(1)求的值;

(2)將函數(shù)的圖象向右平移個(gè)單位后,縱坐標(biāo)不變,得到函數(shù)

圖象,求的單調(diào)遞減區(qū)間.

 

查看答案和解析>>

(本小題12分)已知函數(shù))為偶函數(shù),且函數(shù)圖象的兩相鄰對(duì)稱軸間的距離為

(1)求的值;

(2)將函數(shù)的圖象向右平移個(gè)單位后,得到函數(shù)的圖象,求的單調(diào)遞減區(qū)間.

查看答案和解析>>

已知

(1)求的單調(diào)區(qū)間;

(2)證明:當(dāng)時(shí),恒成立;

(3)任取兩個(gè)不相等的正數(shù),且,若存在使成立,證明:

【解析】(1)g(x)=lnx+,=        (1’)

當(dāng)k0時(shí),>0,所以函數(shù)g(x)的增區(qū)間為(0,+),無減區(qū)間;

當(dāng)k>0時(shí),>0,得x>k;<0,得0<x<k∴增區(qū)間(k,+)減區(qū)間為(0,k)(3’)

(2)設(shè)h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 當(dāng)x變化時(shí),h(x),的變化情況如表

x

1

(1,e)

e

(e,+)

 

0

+

h(x)

e-2

0

所以h(x)0, ∴f(x)2x-e                    (5’)

設(shè)G(x)=lnx-(x1) ==0,當(dāng)且僅當(dāng)x=1時(shí),=0所以G(x) 為減函數(shù), 所以G(x)  G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,綜上,當(dāng)x1時(shí), 2x-ef(x)恒成立.

(3) ∵=lnx+1∴l(xiāng)nx0+1==∴l(xiāng)nx0=-1      ∴l(xiāng)nx0 –lnx=-1–lnx===(10’)  設(shè)H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函數(shù),并且H(t)在t=1處有意義, 所以H(t) <H(1)=0∵=

∴l(xiāng)nx0 –lnx>0, ∴x0 >x

 

查看答案和解析>>

已知函數(shù))為偶函數(shù),

且函數(shù)圖象的兩相鄰對(duì)稱軸間的距離為

的值;

將函數(shù)的圖象向右平移個(gè)單位后,得到函數(shù)的圖象,求的單調(diào)遞減區(qū)間.

查看答案和解析>>


同步練習(xí)冊答案