即對于恒成立.. 查看更多

 

題目列表(包括答案和解析)

已知

(1)求函數(shù)上的最小值

(2)對一切的恒成立,求實數(shù)a的取值范圍

(3)證明對一切,都有成立

【解析】第一問中利用

當(dāng)時,單調(diào)遞減,在單調(diào)遞增,當(dāng),即時,,

第二問中,,則設(shè)

,單調(diào)遞增,,,單調(diào)遞減,,因為對一切,恒成立, 

第三問中問題等價于證明,

由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時取得

設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時取得.從而對一切,都有成立

解:(1)當(dāng)時,單調(diào)遞減,在單調(diào)遞增,當(dāng),即時,,

                 …………4分

(2),則設(shè),

,單調(diào)遞增,,單調(diào)遞減,,因為對一切恒成立,                                             …………9分

(3)問題等價于證明,

由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時取得

設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時取得.從而對一切,都有成立

 

查看答案和解析>>

12.三個同學(xué)對問題“關(guān)于的不等式+25+|-5|≥在[1,12]上恒成立,求實數(shù)的取值范圍”提出各自的解題思路.

甲說:“只須不等式左邊的最小值不小于右邊的最大值”.

乙說:“把不等式變形為左邊含變量的函數(shù),右邊僅含常數(shù),求函數(shù)的最值”.

丙說:“把不等式兩邊看成關(guān)于的函數(shù),作出函數(shù)圖像”.

參考上述解題思路,你認為他們所討論的問題的正確結(jié)論,即的取值范圍是          .

查看答案和解析>>

三個同學(xué)對問題“關(guān)于的不等式+25+|-5|≥在[1,12]上恒成立,求實數(shù)的取值范圍”提出各自的解題思路.

甲說:“只須不等式左邊的最小值不小于右邊的最大值”.

乙說:“把不等式變形為左邊含變量的函數(shù),右邊僅含常數(shù),求函數(shù)的最值”.

丙說:“把不等式兩邊看成關(guān)于的函數(shù),作出函數(shù)圖像”.

參考上述解題思路,你認為他們所討論的問題的正確結(jié)論,即的取值范圍是          .

查看答案和解析>>

三個同學(xué)對問題“關(guān)于的不等式+25+|-5|≥在[1,12]上恒成立,求實數(shù)的取值范圍”提出各自的解題思路.

甲說:“只須不等式左邊的最小值不小于右邊的最大值”.

乙說:“把不等式變形為左邊含變量的函數(shù),右邊僅含常數(shù),求函數(shù)的最值”.

丙說:“把不等式兩邊看成關(guān)于的函數(shù),作出函數(shù)圖像”.

參考上述解題思路,你認為他們所討論的問題的正確結(jié)論,即的取值范圍是          .

 

查看答案和解析>>

三個同學(xué)對問題“關(guān)于的不等式+25+|-5|≥在[1,12]上恒成

立,求實數(shù)的取值范圍”提出各自的解題思路.

甲說:“只須不等式左邊的最小值不小于右邊的最大值”.

乙說:“把不等式變形為左邊含變量的函數(shù),右邊僅含常數(shù),求函數(shù)的最值”.

丙說:“把不等式兩邊看成關(guān)于的函數(shù),作出函數(shù)圖像”.

參考上述解題思路,你認為他們所討論的問題的正確結(jié)論,即的取值范圍是       .

 

查看答案和解析>>


同步練習(xí)冊答案