(Ⅱ)在時(shí).要使成立. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)

(Ⅰ)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;

(Ⅱ)令g(x)= f(x)-x2,是否存在實(shí)數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時(shí),函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由;

(Ⅲ)當(dāng)x∈(0,e]時(shí),證明:

【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問中利用函數(shù)f(x)在[1,2]上是減函數(shù),的導(dǎo)函數(shù)恒小于等于零,然后分離參數(shù)求解得到a的取值范圍。第二問中,

假設(shè)存在實(shí)數(shù)a,使有最小值3,利用,對a分類討論,進(jìn)行求解得到a的值。

第三問中,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120293445381201_ST.files/image006.png">,這樣利用單調(diào)性證明得到不等式成立。

解:(Ⅰ)

(Ⅱ) 

(Ⅲ)見解析

 

查看答案和解析>>

已知函數(shù) R).

(Ⅰ)若 ,求曲線  在點(diǎn)  處的的切線方程;

(Ⅱ)若  對任意  恒成立,求實(shí)數(shù)a的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。

第一問中,利用當(dāng)時(shí),

因?yàn)榍悬c(diǎn)為(), 則,                 

所以在點(diǎn)()處的曲線的切線方程為:

第二問中,由題意得,即可。

Ⅰ)當(dāng)時(shí),

,                                  

因?yàn)榍悬c(diǎn)為(), 則,                  

所以在點(diǎn)()處的曲線的切線方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以恒成立,

上單調(diào)遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當(dāng)時(shí),上恒成立,

上單調(diào)遞增,

.                  ……10分

(2)當(dāng)時(shí),令,對稱軸

上單調(diào)遞增,又    

① 當(dāng),即時(shí),上恒成立,

所以單調(diào)遞增,

,不合題意,舍去  

②當(dāng)時(shí),, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>

已知常數(shù)、都是實(shí)數(shù),在數(shù)列.對任何正整數(shù),等式,都成立。

   (Ⅰ)當(dāng)時(shí),求數(shù)列的通項(xiàng)公式;

   (Ⅱ)當(dāng)時(shí),要使數(shù)列是公比不為1等比數(shù)列,求的值;

   (Ⅲ)當(dāng)時(shí),設(shè)數(shù)列的前項(xiàng)和、的前項(xiàng)和分別為,

的值.

查看答案和解析>>

已知常數(shù)、都是實(shí)數(shù),在數(shù)列.對任何正整數(shù),等式,都成立。

   (Ⅰ)當(dāng)時(shí),求數(shù)列的通項(xiàng)公式;

   (Ⅱ)當(dāng)時(shí),要使數(shù)列是公比不為1等比數(shù)列,求的值;

   (Ⅲ)當(dāng)時(shí),設(shè)數(shù)列的前項(xiàng)和、的前項(xiàng)和分別為,

的值.

查看答案和解析>>

已知函數(shù),函數(shù)的圖象與的圖象關(guān)于點(diǎn)中心對稱。

(1)求函數(shù)的解析式;

(2)如果,,試求出使成立的取值范圍;

(3)是否存在區(qū)間,使對于區(qū)間內(nèi)的任意實(shí)數(shù),只要,且時(shí),都有恒成立?

查看答案和解析>>


同步練習(xí)冊答案