題目列表(包括答案和解析)
已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過(guò)點(diǎn)C(2,2),且拋物線的焦點(diǎn)為F1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線l的方程和圓P的方程.
【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問(wèn)中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問(wèn)中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到
,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。
解:(Ⅰ)設(shè)橢圓E的方程為
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以橢圓E的方程為…………………………4分
(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分
代入橢圓E方程,得…………………………6分
………………………7分
、………………8分
………………………9分
……………………………10分
當(dāng)m=3時(shí),直線l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,
圓P的方程為(x-2)2+(y-1)2=4;………………………………11分
同理,當(dāng)m=-3時(shí),直線l方程為y=-x-3,
圓P的方程為(x+2)2+(y+1)2=4
小明家中有兩種酒杯,一種酒杯的軸截面是等腰直角三角形,稱之為直角酒杯(如圖1),另一種酒杯的軸截面近似一條拋物線,杯口寬4 cm,杯深為8 cm(如圖2),稱之為拋物線酒杯.
(1)請(qǐng)選擇適當(dāng)?shù)淖鴺?biāo)系,求出拋物線酒杯的方程.
(2)一次,小明在游戲中注意到一個(gè)現(xiàn)象,若將一些大小不等的玻璃球依次放入直角酒杯中,則任何玻璃球能觸及酒杯杯底.但若將這些玻璃球放入拋物線酒杯中,則有些小玻璃不能觸及酒杯杯底.小明想用所學(xué)過(guò)數(shù)學(xué)知識(shí)研究一下,當(dāng)玻璃球的半徑r為多大值時(shí),玻璃球一定會(huì)觸及酒杯杯底部.你能幫助小明解決這個(gè)問(wèn)題嗎?
(3)在拋物線酒杯中,放入一根粗細(xì)均勻,長(zhǎng)度為2 cm的細(xì)棒,假設(shè)細(xì)棒的端點(diǎn)與酒杯壁之間的摩擦可以忽略不計(jì),那么當(dāng)細(xì)棒最后達(dá)到平衡狀態(tài)時(shí),細(xì)棒在酒杯中位置如何?
(1)請(qǐng)選擇適當(dāng)?shù)淖鴺?biāo)系,求出拋物線酒杯的方程.
(2)一次,小明在游戲中注意到一個(gè)現(xiàn)象,若將一些大小不等的玻璃球依次放入直角酒杯中,則任何玻璃球都不能觸及酒杯杯底.但若將這些玻璃球放入拋物線酒杯中,則有些小玻璃球能觸及酒杯杯底.小明想用所學(xué)數(shù)學(xué)知識(shí)研究一下,當(dāng)玻璃球的半徑r為多大值時(shí),玻璃球一定會(huì)觸及酒杯杯底.你能幫助小明解決這個(gè)問(wèn)題嗎?
(3)在拋物線酒杯中,放入一根粗細(xì)均勻、長(zhǎng)度為2 cm的細(xì)棒,假設(shè)細(xì)棒的端點(diǎn)與酒杯壁之間的摩擦可以忽略不計(jì),那么當(dāng)細(xì)棒最后達(dá)到平衡狀態(tài)時(shí),細(xì)棒在酒杯中位置如何?
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com