當(dāng)時(shí).的減區(qū)間是.增區(qū)間是. 查看更多

 

題目列表(包括答案和解析)

在區(qū)間D上,如果函數(shù)f(x)為增函數(shù),而函數(shù)
1
x
f(x)
為減函數(shù),則稱(chēng)函數(shù)f(x)為“弱增函數(shù)”.已知函數(shù)f(x)=1-
1
1+x

(1)判斷函數(shù)f(x)在區(qū)間(0,1]上是否為“弱增函數(shù)”;
(2)設(shè)x1,x2∈[0,+∞),且x1≠x2,證明:|f(x2)-f(x1)|<
1
2
|x1-x2|

(3)當(dāng)x∈[0,1]時(shí),不等式1-ax≤
1
1+x
≤1-bx恒成立,求實(shí)數(shù)a,b的取值范圍.

查看答案和解析>>

在區(qū)間D上,如果函數(shù)f(x)為增函數(shù),而函數(shù)為減函數(shù),則稱(chēng)函數(shù)f(x)為“弱增”函數(shù).已知函數(shù)
(1)判斷函數(shù)f(x)在區(qū)間(0,1]上是否為“弱增”函數(shù);
(2)設(shè)x1,x2∈[0,+∞),x1≠x2,證明;
(3)當(dāng)x∈[0,1]時(shí),不等式恒成立,求實(shí)數(shù)a,b的取值范圍.

查看答案和解析>>

在區(qū)間D上,如果函數(shù)f(x)為增函數(shù),而函數(shù)數(shù)學(xué)公式為減函數(shù),則稱(chēng)函數(shù)f(x)為“弱增函數(shù)”.已知函數(shù)f(x)=1-數(shù)學(xué)公式
(1)判斷函數(shù)f(x)在區(qū)間(0,1]上是否為“弱增函數(shù)”;
(2)設(shè)x1,x2∈[0,+∞),且x1≠x2,證明:|f(x2)-f(x1)|<數(shù)學(xué)公式
(3)當(dāng)x∈[0,1]時(shí),不等式1-ax≤數(shù)學(xué)公式≤1-bx恒成立,求實(shí)數(shù)a,b的取值范圍.

查看答案和解析>>

在區(qū)間D上,如果函數(shù)f(x)為增函數(shù),而函數(shù)為減函數(shù),則稱(chēng)函數(shù)f(x)為“弱增函數(shù)”.已知函數(shù)f(x)=1-
(1)判斷函數(shù)f(x)在區(qū)間(0,1]上是否為“弱增函數(shù)”;
(2)設(shè)x1,x2∈[0,+∞),且x1≠x2,證明:|f(x2)-f(x1)|<
(3)當(dāng)x∈[0,1]時(shí),不等式1-ax≤≤1-bx恒成立,求實(shí)數(shù)a,b的取值范圍.

查看答案和解析>>

當(dāng)x>0時(shí),函數(shù)y=-(x4-4x3+3)的單調(diào)遞減區(qū)間是_________,遞增區(qū)間是_________.

查看答案和解析>>


同步練習(xí)冊(cè)答案