(1)已知函數(shù).求證:為曲線(xiàn)的“上夾線(xiàn) . (2)觀察下圖: 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ax3+bx2+cx+d在x=0處取得極值,曲線(xiàn)y=f(x)過(guò)原點(diǎn)O和點(diǎn)P(-1,2),若曲線(xiàn)y=f(x)在P處的切線(xiàn)l與直線(xiàn)y=2x的夾角為45°,且l的傾斜角為鈍角.
(1)求f(x)的解析式;
(2)若y=f(x)在區(qū)間[2m-1,m+1]上是增函數(shù),求實(shí)數(shù)m的取值范圍;
(3)若x1,x2∈[-1,1],求證:|f(x1)-f(x2)|≤4.

查看答案和解析>>

已知函數(shù)取得極小值

(Ⅰ)求ab的值;

(Ⅱ)設(shè)直線(xiàn). 若直線(xiàn)l與曲線(xiàn)S同時(shí)滿(mǎn)足下列兩個(gè)條件:

(1)直線(xiàn)l與曲線(xiàn)S相切且至少有兩個(gè)切點(diǎn);

(2)對(duì)任意xR都有. 則稱(chēng)直線(xiàn)l為曲線(xiàn)S的“上夾線(xiàn)”.試證明:直線(xiàn)是曲線(xiàn)的“上夾線(xiàn)”.

查看答案和解析>>

已知函數(shù)取得極小值

(Ⅰ)求a,b的值;

(Ⅱ)設(shè)直線(xiàn). 若直線(xiàn)l與曲線(xiàn)S同時(shí)滿(mǎn)足下列兩個(gè)條件:

(1)直線(xiàn)l與曲線(xiàn)S相切且至少有兩個(gè)切點(diǎn);

(2)對(duì)任意xR都有. 則稱(chēng)直線(xiàn)l為曲線(xiàn)S的“上夾線(xiàn)”.試證明:直線(xiàn)是曲線(xiàn)的“上夾線(xiàn)”.

查看答案和解析>>

已知函數(shù)f(x)=ax+bsinx,當(dāng)

(1)求a,b的值;

(2)設(shè)直線(xiàn)l:y=g(x),曲線(xiàn)S:y=F(x).若直線(xiàn)l與曲線(xiàn)S同時(shí)滿(mǎn)足下列兩個(gè)條件:①直線(xiàn)l與曲線(xiàn)S相切且至少有兩個(gè)切點(diǎn);②對(duì)任意xR都有g(shù)(x)≥F(x).則稱(chēng)直線(xiàn)l為曲線(xiàn)S的“上夾線(xiàn)”.

試證明:直線(xiàn)l:y=x+2是曲線(xiàn)S:y=ax+bsinx的“上夾線(xiàn)”.

查看答案和解析>>

設(shè)直線(xiàn). 若直線(xiàn)l與曲線(xiàn)S同時(shí)滿(mǎn)足下列兩個(gè)條件:①直線(xiàn)l與曲線(xiàn)S相切且至少有兩個(gè)切點(diǎn);②對(duì)任意xR都有. 則稱(chēng)直線(xiàn)l為曲線(xiàn)S的“上夾線(xiàn)”.

⑴已知函數(shù).求證:為曲線(xiàn)的“上夾線(xiàn)”.

⑵觀察下圖:

           

    根據(jù)上圖,試推測(cè)曲線(xiàn)的“上夾線(xiàn)”的方程,并給出證明.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案