題目列表(包括答案和解析)
已知向量,且,A為銳角,求:
(1)角A的大小;
(2)求函數(shù)的單調(diào)遞增區(qū)間和值域.
【解析】第一問中利用,解得 又A為銳角
第二問中,
由 解得單調(diào)遞增區(qū)間為
解:(1) ……………………3分
又A為銳角
……………………5分
(2)
……………………8分
由 解得單調(diào)遞增區(qū)間為
……………………10分
f(x1)+f(x2) |
2 |
3 |
2 |
g(x1)+g(x2) |
2 |
3 |
2 |
lgx1+lgx2 |
2 |
3 |
2 |
1000 |
x1 |
1000 |
x1 |
1000 |
x1 |
g(x)+g(x2) |
2 |
3 |
2 |
3 |
2 |
把函數(shù)的圖象按向量平移得到函數(shù)的圖象.
(1)求函數(shù)的解析式; (2)若,證明:.
【解析】本試題主要考查了函數(shù) 平抑變換和運(yùn)用函數(shù)思想證明不等式。第一問中,利用設(shè)上任意一點(diǎn)為(x,y)則平移前對應(yīng)點(diǎn)是(x+1,y-2)代入 ,便可以得到結(jié)論。第二問中,令,然后求導(dǎo),利用最小值大于零得到。
(1)解:設(shè)上任意一點(diǎn)為(x,y)則平移前對應(yīng)點(diǎn)是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分
(2) 證明:令,……6分
則……8分
,∴,∴在上單調(diào)遞增.……10分
故,即
(本題滿分10分)
某次象棋比賽的決賽在甲乙兩名棋手之間進(jìn)行,比賽采用積分制,比賽規(guī)則規(guī)定贏一局得2分,平一局得1分,輸一局得0分, 根據(jù)以往經(jīng)驗(yàn),每局甲贏的概率為,乙贏的概率為,且每局比賽輸贏互不影響.若甲第局的得分記為,令
(Ⅰ)求的概率;
(Ⅱ)若=S2,求的分布列及數(shù)學(xué)期望.
設(shè)函數(shù).
(I)求的單調(diào)區(qū)間;
(II)當(dāng)0<a<2時,求函數(shù)在區(qū)間上的最小值.
【解析】第一問定義域?yàn)檎鏀?shù)大于零,得到..
令,則,所以或,得到結(jié)論。
第二問中, ().
.
因?yàn)?<a<2,所以,.令 可得.
對參數(shù)討論的得到最值。
所以函數(shù)在上為減函數(shù),在上為增函數(shù).
(I)定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">. ………………………1分
.
令,則,所以或. ……………………3分
因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以.
令,則,所以.
因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以. ………………………5分
所以函數(shù)的單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為. ………………………7分
(II) ().
.
因?yàn)?<a<2,所以,.令 可得.…………9分
所以函數(shù)在上為減函數(shù),在上為增函數(shù).
①當(dāng),即時,
在區(qū)間上,在上為減函數(shù),在上為增函數(shù).
所以. ………………………10分
②當(dāng),即時,在區(qū)間上為減函數(shù).
所以.
綜上所述,當(dāng)時,;
當(dāng)時,
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com