二分法二分法及步驟: 查看更多

 

題目列表(包括答案和解析)

有一工業(yè)燒堿(含氯化鈉),現(xiàn)要求采用學(xué)過的定量實(shí)驗(yàn)的方法測(cè)定此工業(yè)燒堿中氫氧化鈉的質(zhì)量分?jǐn)?shù)(假設(shè)各步實(shí)驗(yàn)中試樣的損失忽略不計(jì)),請(qǐng)完成如下實(shí)驗(yàn)報(bào)告。

實(shí)驗(yàn)報(bào)告

(一)   實(shí)驗(yàn)?zāi)康模汗I(yè)燒堿中氫氧化鈉的質(zhì)量分?jǐn)?shù)測(cè)定

(二)   實(shí)驗(yàn)原理:(寫出有關(guān)離子反應(yīng)方程式):_____________________________,

(三)   實(shí)驗(yàn)試劑:工業(yè)燒堿、標(biāo)準(zhǔn)濃度的鹽酸、甲基橙。

(四)   實(shí)驗(yàn)儀器:鐵架臺(tái)(成套)、天平、燒杯、錐形瓶、移液管、膠頭滴管、100ml量筒、 ________、_______。

(五)   按實(shí)驗(yàn)順序填寫實(shí)驗(yàn)步驟: (中和滴定法)

______、溶解、移液管量取一定體積的待測(cè)液于潔凈的錐形瓶中、__________、用標(biāo)準(zhǔn)鹽酸滴定至終點(diǎn)。

當(dāng)?shù)味ㄖ寥芤河蒧_____色變?yōu)開____色,且半分鐘不腿色時(shí)停止滴定。在相同條件下重復(fù)二次。

(六)數(shù)據(jù)處理及問題討論:

1、若要測(cè)定樣品中氫氧化鈉的質(zhì)量分?jǐn)?shù),實(shí)驗(yàn)中至少需要測(cè)定那些實(shí)驗(yàn)數(shù)據(jù)?_______________________________________。

2、取a克樣品,配置100mL溶液,取20mL待測(cè)液,用C mol/L的標(biāo)準(zhǔn)鹽酸滴定至終點(diǎn),消耗鹽酸VmL。試寫出樣品中氫氧化鈉的質(zhì)量分?jǐn)?shù)表達(dá)式為:                      。

查看答案和解析>>

2006年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(北京卷)

理科綜合能力測(cè)試試題卷(生物部分)

1.以下不能說明細(xì)胞全能性的實(shí)驗(yàn)是

A.胡蘿卜韌皮部細(xì)胞培育出植株            B.紫色糯性玉米種子培育出植株

C.轉(zhuǎn)入抗蟲基因的棉花細(xì)胞培育出植株      D.番茄與馬鈴薯體細(xì)胞雜交后培育出植株

2.夏季,在晴天、陰天、多云、高溫干旱四種天氣條件下,獼猴桃的凈光合作用強(qiáng)度(實(shí)際光合速率與呼吸速率之差)變化曲線不同,表示晴天的曲線圖是

3.用蔗糖、奶粉和經(jīng)蛋白酶水解后的玉米胚芽液,通過乳酸菌發(fā)酵可生產(chǎn)新型酸奶,下列相關(guān)敘述錯(cuò)誤的是

A.蔗糖消耗量與乳酸生成量呈正相關(guān)        B.酸奶出現(xiàn)明顯氣泡說明有雜菌污染

C.應(yīng)選擇處于對(duì)數(shù)期的乳酸菌接種          D.只有奶粉為乳酸菌發(fā)酵提供氮源

4.用32P標(biāo)記了玉米體細(xì)胞(含20條染色體)的DNA分子雙鏈,再將這些細(xì)胞轉(zhuǎn)入不含32P的培養(yǎng)基中培養(yǎng),在第二次細(xì)胞分裂的中期、后期,一個(gè)細(xì)胞中的染色體總條數(shù)和被32P標(biāo)記的染色體條數(shù)分別是

A.中期20和20、后期40和20             B.中期20和10、后期40和20

C.中期20和20、后期40和10             D.中期20和10、后期40和10

29.(12分)為合理利用水域資源,某調(diào)查小組對(duì)一個(gè)開放性水庫生態(tài)系統(tǒng)進(jìn)行了初步調(diào)查,部分?jǐn)?shù)據(jù)如下表:

(1)浮游藻類屬于該生態(tài)系統(tǒng)成分中的          ,它處于生態(tài)系統(tǒng)營(yíng)養(yǎng)結(jié)構(gòu)中的          。

(2)浮游藻類數(shù)量少,能從一個(gè)方面反映水質(zhì)狀況好。調(diào)查數(shù)據(jù)分析表明:該水體具有一定的       能力。

(3)浮游藻類所需的礦質(zhì)營(yíng)養(yǎng)可來自細(xì)菌、真菌等生物的          ,生活在水庫淤泥中的細(xì)菌代謝類型主要為          。

(4)該水庫對(duì)游人開放一段時(shí)間后,檢測(cè)發(fā)現(xiàn)水體己被氮、磷污染。為確定污染源是否來自游人,應(yīng)檢測(cè)

          處浮游藻類的種類和數(shù)量。

30.(18分)為豐富植物育種的種質(zhì)資源材料,利用鈷60的γ射線輻射植物種子,篩選出不同性狀的突變植株。請(qǐng)回答下列問題:

(1)鈷60的γ輻射用于育種的方法屬于          育種。

(2)從突變材料中選出高產(chǎn)植株,為培育高產(chǎn)、優(yōu)質(zhì)、抗鹽新品種,利用該植株進(jìn)行的部分雜交實(shí)驗(yàn)如下:

①控制高產(chǎn)、優(yōu)質(zhì)性狀的基因位于        對(duì)染色體上,在減數(shù)分裂聯(lián)會(huì)期        (能、不能)配對(duì)。

②抗鹽性狀屬于          遺傳。

(3)從突變植株中還獲得了顯性高蛋白植株(純合子)。為驗(yàn)證該性狀是否由一對(duì)基因控制,請(qǐng)參與實(shí)驗(yàn)設(shè)計(jì)并完善實(shí)驗(yàn)方案:

①步驟1:選擇                    雜交。

預(yù)期結(jié)果:                                                 

②步驟2:                                                  。

預(yù)期結(jié)果:                                                  。

③觀察實(shí)驗(yàn)結(jié)果,進(jìn)行統(tǒng)計(jì)分析:如果                    相符,可證明該性狀由一對(duì)基因控制。

 

31.(18分)為研究長(zhǎng)跑中運(yùn)動(dòng)員體內(nèi)的物質(zhì)代謝及其調(diào)節(jié),科學(xué)家選擇年齡、體重相同,身體健康的8名男性運(yùn)動(dòng)員,利用等熱量的A、B兩類食物做了兩次實(shí)驗(yàn)。

實(shí)驗(yàn)還測(cè)定了糖和脂肪的消耗情況(圖2)。

請(qǐng)據(jù)圖分析回答問題:

(1)圖1顯示,吃B食物后,          濃度升高,引起          濃度升高。

(2)圖1顯示,長(zhǎng)跑中,A、B兩組胰島素濃度差異逐漸          ,而血糖濃度差異卻逐漸          ,A組血糖濃度相對(duì)較高,分析可能是腎上腺素和          也參與了對(duì)血糖的調(diào)節(jié),且作用相對(duì)明顯,這兩種激素之間具有          作用。

(3)長(zhǎng)跑中消耗的能量主要來自糖和脂肪。研究表明腎上腺素有促進(jìn)脂肪分解的作用。從能量代謝的角度分析圖2,A組脂肪消耗量比B組          ,由此推測(cè)A組糖的消耗量相對(duì)          。

(4)通過檢測(cè)尿中的尿素量,還可以了解運(yùn)動(dòng)員在長(zhǎng)跑中          代謝的情況。

 

參考答案:

1.B              2.B              3.D             4.A

29.(12分)

    (1)生產(chǎn)者    第一營(yíng)養(yǎng)級(jí)

    (2)自動(dòng)調(diào)節(jié)(或自凈化)

    (3)分解作用    異養(yǎng)厭氧型

    (4)入水口

30.(18分)

    (1)誘變

    (2)①兩(或不同)    不能

    ②細(xì)胞質(zhì)(或母系)

    (3)①高蛋白(純合)植株    低蛋白植株(或非高蛋白植株)

    后代(或F1)表現(xiàn)型都是高蛋白植株

    ②測(cè)交方案:

    用F1與低蛋白植株雜交

    后代高蛋白植株和低蛋白植株的比例是1:1

    或自交方案:

    F1自交(或雜合高蛋白植株自交)

    后代高蛋白植株和低蛋白植株的比例是3:1

    ③實(shí)驗(yàn)結(jié)果    預(yù)期結(jié)果

31.(18分)

    (1)血糖    胰島素

    (2)減小    增大    胰高血糖素    協(xié)同

    (3)高    減少

    (4)蛋白質(zhì)

 

 

                                             

 

查看答案和解析>>

                           2008年7月

【課前預(yù)習(xí)】

答案: 1、;  2、B.試題分析,可求得:。易知函數(shù)的零點(diǎn)所在區(qū)間為

 3、;   4、-4。

四.典例解析

題型1:方程的根與函數(shù)零點(diǎn)

例1. 分析:利用函數(shù)零點(diǎn)的存在性定理或圖像進(jìn)行判斷。

解析:(1)方法一:

。

方法二:

解得

所以函數(shù)。

(2)∵,

     ∴

(3)∵,

       ,

     ∴,故存在零點(diǎn)。

評(píng)析:函數(shù)的零點(diǎn)存在性問題常用的辦法有三種:一是定理;二是用方程;三是用圖像

 

例2. 解析:(1)方法一令則根據(jù)選擇支可以求得<0;<0;>0.因?yàn)?sub><0可得零點(diǎn)在(2,3)內(nèi)選C

方法二:在同一平面直角坐標(biāo)系中,畫出函數(shù)y=lgx與y=-x+3的圖象(如圖)。它們的交點(diǎn)橫坐標(biāo),顯然在區(qū)間(1,3)內(nèi),由此可排除A,D至于選B還是選C,由于畫圖精確性的限制,單憑直觀就比較困難了。實(shí)際上這是要比較與2的大小。當(dāng)x=2時(shí),lgx=lg2,3-x=1。由于lg2<1,因此>2,從而判定∈(2,3),故本題應(yīng)選C

(2)原方程等價(jià)于

構(gòu)造函數(shù),作出它們的圖像,易知平行于x軸的直線與拋物線的交點(diǎn)情況可得:

①當(dāng)時(shí),原方程有一解;

②當(dāng)時(shí),原方程有兩解;

③當(dāng)時(shí),原方程無解。

點(diǎn)評(píng):圖象法求函數(shù)零點(diǎn),考查學(xué)生的數(shù)形結(jié)合思想。本題是通過構(gòu)造函數(shù)用數(shù)形結(jié)合法求方程lgx+x=3解所在的區(qū)間。數(shù)形結(jié)合,要在結(jié)合方面下功夫。不僅要通過圖象直觀估計(jì),而且還要計(jì)算的鄰近兩個(gè)函數(shù)值,通過比較其大小進(jìn)行判斷

題型2:零點(diǎn)存在性定理

例3.解析:(1)函數(shù)f(x)=x-ln(x+m),x∈(-m,+∞)連續(xù),且

當(dāng)x∈(-m,1-m)時(shí),f (x)<0,f(x)為減函數(shù),f(x)>f(1-m)

當(dāng)x∈(1-m, +∞)時(shí),f (x)>0,f(x)為增函數(shù),f(x)>f(1-m)

根據(jù)函數(shù)極值判別方法,f(1-m)=1-m為極小值,而且

對(duì)x∈(-m, +∞)都有f(x)≥f(1-m)=1-m

故當(dāng)整數(shù)m≤1時(shí),f(x) ≥1-m≥0

(2)證明:由(I)知,當(dāng)整數(shù)m>1時(shí),f(1-m)=1-m<0,

函數(shù)f(x)=x-ln(x+m),在 上為連續(xù)減函數(shù).

由所給定理知,存在唯一的

而當(dāng)整數(shù)m>1時(shí),

類似地,當(dāng)整數(shù)m>1時(shí),函數(shù)f(x)=x-ln(x+m),在 上為連續(xù)增函數(shù)且 f(1-m)與異號(hào),由所給定理知,存在唯一的

故當(dāng)m>1時(shí),方程f(x)=0在內(nèi)有兩個(gè)實(shí)根。

點(diǎn)評(píng):本題以信息給予的形式考察零點(diǎn)的存在性定理。解決該題的解題技巧主要在區(qū)間的放縮和不等式的應(yīng)用上。

例4. 解析:由零點(diǎn)存在性定理可知選項(xiàng)D不正確;對(duì)于選項(xiàng)B,可通過反例“在區(qū)間上滿足,但其存在三個(gè)解”推翻;同時(shí)選項(xiàng)A可通過反例“在區(qū)間上滿足,但其存在兩個(gè)解”;選項(xiàng)D正確,見實(shí)例“在區(qū)間上滿足,但其不存在實(shí)數(shù)解”。

點(diǎn)評(píng):該問題詳細(xì)介紹了零點(diǎn)存在性定理的理論基礎(chǔ)。

題型3:二分法的概念

例5. 解析:如果函數(shù)在某區(qū)間滿足二分法題設(shè),且在區(qū)間內(nèi)存在兩個(gè)及以上的實(shí)根,二分法只可能求出其中的一個(gè),只要限定了近似解的范圍就可以得到函數(shù)的近似解,二分法的實(shí)施滿足零點(diǎn)存在性定理,在區(qū)間內(nèi)一定存在零點(diǎn),甚至有可能得到函數(shù)的精確零點(diǎn)。

點(diǎn)評(píng):該題深入解析了二分法的思想方法。

 

例6.解析:由四舍五入的原則知道,當(dāng)時(shí),精度達(dá)到。此時(shí)差限是0.0005,選項(xiàng)為C。

點(diǎn)評(píng):該題考察了差限的定義,以及它對(duì)精度的影響。

題型4:應(yīng)用“二分法”求函數(shù)的零點(diǎn)和方程的近似解

例7. 解析:原方程即。令,

用計(jì)算器做出如下對(duì)應(yīng)值表

x

-2

-1

0

1

2

f(x)

2.5820

3.0530

27918

1.0794

-4.6974

觀察上表,可知零點(diǎn)在(1,2)內(nèi)

取區(qū)間中點(diǎn)=1.5,且,從而,可知零點(diǎn)在(1,1.5)內(nèi);

再取區(qū)間中點(diǎn)=1.25,且,從而,可知零點(diǎn)在(1.25,1.5)內(nèi);

同理取區(qū)間中點(diǎn)=1.375,且,從而,可知零點(diǎn)在(1.25,1.375)內(nèi);

由于區(qū)間(1.25,1.375)內(nèi)任一值精確到0.1后都是1.3。故結(jié)果是1.3。

點(diǎn)評(píng):該題系統(tǒng)的講解了二分法求方程近似解的過程,通過本題學(xué)會(huì)借助精度終止二分法的過程。

例8. 分析:本例除借助計(jì)算器或計(jì)算機(jī)確定方程解所在的大致區(qū)間和解的個(gè)數(shù)外,你是否還可以想到有什么方法確定方程的根的個(gè)數(shù)?

略解:圖象在閉區(qū)間,上連續(xù)的單調(diào)函數(shù),在上至多有一個(gè)零點(diǎn)。

點(diǎn)評(píng):①第一步確定零點(diǎn)所在的大致區(qū)間,,可利用函數(shù)性質(zhì),也可借助計(jì)算機(jī)或計(jì)算器,但盡量取端點(diǎn)為整數(shù)的區(qū)間,盡量縮短區(qū)間長(zhǎng)度,通?纱_定一個(gè)長(zhǎng)度為1的區(qū)間;

②建議列表樣式如下:

零點(diǎn)所在區(qū)間

中點(diǎn)函數(shù)值

區(qū)間長(zhǎng)度

[1,2]

>0

1

[1,1.5]

<0

0.5

[1.25,1.5]

<0

0.25

如此列表的優(yōu)勢(shì):計(jì)算步數(shù)明確,區(qū)間長(zhǎng)度小于精度時(shí),即為計(jì)算的最后一步。

題型5:一元二次方程的根與一元二次函數(shù)的零點(diǎn)

例9. 分析:從二次方程的根分布看二次函數(shù)圖像特征,再根據(jù)圖像特征列出對(duì)應(yīng)的不等式(組)。

解析:(1)設(shè),

,知

(2)令

,

,∴,∴,

綜上,。

評(píng)析:二次方程、二次函數(shù)、二次不等式三者密不可分。

例10.解析:設(shè),則的二根為。

(1)由,可得  ,即

       兩式相加得,所以,;

(2)由, 可得  。

,所以同號(hào)。

等價(jià)于

,

即  

解之得  。

點(diǎn)評(píng):條件實(shí)際上給出了的兩個(gè)實(shí)數(shù)根所在的區(qū)間,因此可以考慮利用上述圖像特征去等價(jià)轉(zhuǎn)化。

【課外作業(yè)】

1. 答案:A,令即可;

2. 答案:B;

3.答案:C,由可得關(guān)于對(duì)稱,∴,∴,∴,∵,∴

4、 答案:D, ∵,∴, ∴

5. 答案:C,先求出,根據(jù)單調(diào)性求解;

五.思維總結(jié)

1.函數(shù)零點(diǎn)的求法:

①(代數(shù)法)求方程的實(shí)數(shù)根;

②(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn)。

2.解決二次函數(shù)的零點(diǎn)分布問題要善于結(jié)合圖像,從判別式、韋達(dá)定理、對(duì)稱軸、區(qū)間端點(diǎn)函數(shù)值的正負(fù)、二次函數(shù)圖像的開口方向等方面去考慮使結(jié)論成立的所有條件。函數(shù)與方程、不等式聯(lián)系密切,聯(lián)系的方法就是數(shù)形結(jié)合。

 

 


同步練習(xí)冊(cè)答案