(Ⅱ)若直線(xiàn) 與雙曲線(xiàn) G相交于P.Q兩點(diǎn).且以PQ為直徑的圓過(guò)雙曲線(xiàn)G的右頂點(diǎn)D.求證:直線(xiàn)過(guò)定點(diǎn)'并求出該點(diǎn)的坐標(biāo) 查看更多

 

題目列表(包括答案和解析)

已知雙曲線(xiàn)G的中心在原點(diǎn),它的漸近線(xiàn)與圓x2+y2-10x+20=0相切.過(guò)點(diǎn)P(-4,0)作斜率為
14
的直線(xiàn)l,使得l和G交于A(yíng),B兩點(diǎn),和y軸交于點(diǎn)C,并且點(diǎn)P在線(xiàn)段AB上,又滿(mǎn)足|PA|•|PB|=|PC|2
(1)求雙曲線(xiàn)G的漸近線(xiàn)的方程;
(2)求雙曲線(xiàn)G的方程;
(3)橢圓S的中心在原點(diǎn),它的短軸是G的實(shí)軸、如果S中垂直于l的平行弦的中點(diǎn)的軌跡恰好是G的漸近線(xiàn)截在S內(nèi)的部分AB,若P(x,y)(y>0)為橢圓上一點(diǎn),求當(dāng)△ABP的面積最大時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

已知雙曲線(xiàn)G的中心在原點(diǎn),它的漸近線(xiàn)與圓x2+y2-10x+20=0相切.過(guò)點(diǎn)P(-4,0)作斜率為數(shù)學(xué)公式的直線(xiàn)l,使得l和G交于A(yíng),B兩點(diǎn),和y軸交于點(diǎn)C,并且點(diǎn)P在線(xiàn)段AB上,又滿(mǎn)足|PA|•|PB|=|PC|2
(1)求雙曲線(xiàn)G的漸近線(xiàn)的方程;
(2)求雙曲線(xiàn)G的方程;
(3)橢圓S的中心在原點(diǎn),它的短軸是G的實(shí)軸、如果S中垂直于l的平行弦的中點(diǎn)的軌跡恰好是G的漸近線(xiàn)截在S內(nèi)的部分AB,若P(x,y)(y>0)為橢圓上一點(diǎn),求當(dāng)△ABP的面積最大時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

已知雙曲線(xiàn)G的中心在原點(diǎn),它的漸近線(xiàn)與圓x2+y2-10x+20=0相切.過(guò)點(diǎn)P(-4,0)作斜率為的直線(xiàn)l,使得l和G交于A(yíng),B兩點(diǎn),和y軸交于點(diǎn)C,并且點(diǎn)P在線(xiàn)段AB上,又滿(mǎn)足|PA|•|PB|=|PC|2
(1)求雙曲線(xiàn)G的漸近線(xiàn)的方程;
(2)求雙曲線(xiàn)G的方程;
(3)橢圓S的中心在原點(diǎn),它的短軸是G的實(shí)軸、如果S中垂直于l的平行弦的中點(diǎn)的軌跡恰好是G的漸近線(xiàn)截在S內(nèi)的部分AB,若P(x,y)(y>0)為橢圓上一點(diǎn),求當(dāng)△ABP的面積最大時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

已知橢圓G與雙曲線(xiàn)12x2-4y2=3有相同的焦點(diǎn),且過(guò)點(diǎn)P(1,
32
)

(1)求橢圓G的方程;
(2)設(shè)F1、F2是橢圓G的左焦點(diǎn)和右焦點(diǎn),過(guò)F2的直線(xiàn)l:x=my+1與橢圓G相交于A(yíng)、B兩點(diǎn),請(qǐng)問(wèn)△ABF1的內(nèi)切圓M的面積是否存在最大值?若存在,求出這個(gè)最大值及直線(xiàn)l的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

如圖,直角坐標(biāo)系xOy中,一直角三角形ABC,∠C=90°,B、C在x軸上且關(guān)于原點(diǎn)O對(duì)稱(chēng),D在邊BC上,BD=3DC,△ABC的周長(zhǎng)為12.若一雙曲線(xiàn)E以B、C為焦點(diǎn),且經(jīng)過(guò)A、D兩點(diǎn).
(1)求雙曲線(xiàn)E的方程;
(2)若一過(guò)點(diǎn)P(m,0)(m為非零常數(shù))的直線(xiàn)l與雙曲線(xiàn)E相交于不同于雙曲線(xiàn)頂點(diǎn)的兩點(diǎn)M、N,且
MP
PN
,問(wèn)在x軸上是否存在定點(diǎn)G,使
BC
⊥(
GM
GN
)
?若存在,求出所有這樣定點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案