(I) 取AC中點O.連結(jié)BO. ABC是正三角形 BO⊥AC 查看更多

 

題目列表(包括答案和解析)

如圖,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四邊形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分別為CE、AB的中點.

(Ⅰ)證明:OD//平面ABC;

(Ⅱ)能否在EM上找一點N,使得ON⊥平面ABDE?若能,請指出點N的位置,并加以證明;若不能,請說明理由.

【解析】第一問:取AC中點F,連結(jié)OF、FB.∵F是AC的中點,O為CE的中點,

∴OF∥EA且OF=且BD=

∴OF∥DB,OF=DB,

∴四邊形BDOF是平行四邊形。

∴OD∥FB

第二問中,當(dāng)N是EM中點時,ON⊥平面ABDE。           ………7分

證明:取EM中點N,連結(jié)ON、CM, AC=BC,M為AB中點,∴CM⊥AB,

又∵面ABDE⊥面ABC,面ABDE面ABC=AB,CM面ABC,

∴CM⊥面ABDE,∵N是EM中點,O為CE中點,∴ON∥CM,

∴ON⊥平面ABDE。

 

查看答案和解析>>

如圖,三棱錐中,側(cè)面底面, ,且,.(Ⅰ)求證:平面;

(Ⅱ)若為側(cè)棱PB的中點,求直線AE與底面所成角的正弦值.

【解析】第一問中,利用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以第二問中結(jié)合取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,又EH//PO,所以EH平面ABC ,

為直線AE與底面ABC 所成角,

 (Ⅰ) 證明:由用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以

………………………………………………6分

(Ⅱ)如圖, 取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,

因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,

又EH//PO,所以EH平面ABC ,

為直線AE與底面ABC 所成角,

………………………………………10分

又PO=1/2AC=,也所以有EH=1/2PO=,

由(Ⅰ)已證平面PBC,所以,即,

,

于是

所以直線AE與底面ABC 所成角的正弦值為

 

查看答案和解析>>

如圖,三棱柱的所有棱長均為2,且點在面上        

的射影為BC中點O,則異面直線AB與CC1所成角的余弦值為(   )  

(A)       (B)      (C)       (D)

 

查看答案和解析>>

如圖,在三棱錐中,是正三角形,D的中點,二面角為120,,.取AC的中點O為坐標(biāo)原點建立空間直角坐標(biāo)系,如圖所示,BDz軸于點E.

(I)求B、D、P三點的坐標(biāo);

(II)求異面直線ABPC所成的角;

查看答案和解析>>

17、如圖,棱柱ABCD-A1B1C1D1的底面ABCD為菱形,AC∩BD=O,側(cè)棱AA1⊥BD,點F為DC1的中點.
(I) 證明:OF∥平面BCC1B1;
(II)證明:平面DBC1⊥平面ACC1A1

查看答案和解析>>


同步練習(xí)冊答案