又 平面.所以當(dāng)是棱的中點(diǎn)時(shí).平面.解法二 查看更多

 

題目列表(包括答案和解析)

16、設(shè)有如下三個(gè)命題:
甲:相交直線l、m都在平面α內(nèi),并且都不在平面β內(nèi);
乙:直線l、m中至少有一條與平面β相交;
丙:平面α與平面β相交.
當(dāng)甲成立時(shí)( 。

查看答案和解析>>

在棱長為的正方體中,是線段的中點(diǎn),.

(1) 求證:^

(2) 求證://平面;

(3) 求三棱錐的表面積.

【解析】本試題考查了線線垂直和線面平行的判定定理和表面積公式的運(yùn)用。第一問中,利用,得到結(jié)論,第二問中,先判定為平行四邊形,然后,可知結(jié)論成立。

第三問中,是邊長為的正三角形,其面積為,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image017.png">平面,所以,

所以是直角三角形,其面積為

同理的面積為, 面積為.  所以三棱錐的表面積為.

解: (1)證明:根據(jù)正方體的性質(zhì)

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image028.png">,

所以,又,所以,

所以^.               ………………4分

(2)證明:連接,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image033.png">,

所以為平行四邊形,因此,

由于是線段的中點(diǎn),所以,      …………6分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image035.png">平面,所以∥平面.   ……………8分

(3)是邊長為的正三角形,其面積為,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image017.png">平面,所以

所以是直角三角形,其面積為,

同理的面積為,              ……………………10分

面積為.          所以三棱錐的表面積為

 

查看答案和解析>>

下列命題正確的是(    )

A.因?yàn)橹本向兩方無限延伸,所以直線不可能在平面內(nèi)

B.如果線段的中點(diǎn)在平面內(nèi),那么線段在平面內(nèi)

C.如果線段上有一個(gè)點(diǎn)不在平面內(nèi),那么線段就不在平面內(nèi)

D.當(dāng)平面經(jīng)過直線時(shí),直線上可以有不在平面內(nèi)的點(diǎn)

查看答案和解析>>

設(shè)有如下三個(gè)命題:
甲:相交直線l、m都在平面α內(nèi),并且都不在平面β內(nèi);
乙:直線l、m中至少有一條與平面β相交;
丙:平面α與平面β相交.
當(dāng)甲成立時(shí)


  1. A.
    乙是丙的充分而不必要條件
  2. B.
    乙是丙的必要而不充分條件
  3. C.
    乙是丙的充分且必要條件
  4. D.
    乙既不是丙的充分條件又不是丙的必要條件

查看答案和解析>>

設(shè)有如下三個(gè)命題:甲:相交直線、m都在平面α內(nèi),并且都不在平面β內(nèi);乙:直線、m中至少有一條與平面β相交;丙:平面α與平面β相交.

當(dāng)甲成立時(shí),

A.乙是丙的充分而不必要條件      B.乙是丙的必要而不充分條件

C.乙是丙的充分且必要條件        D.乙既不是丙的充分條件又不是丙的必要條件

查看答案和解析>>


同步練習(xí)冊(cè)答案