18. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an;

   (Ⅱ)設數(shù)列{an}的前n項和為Sn,證明:

   (Ⅲ)設,證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m        

   (2)當時,求弦長|AB|的取值范圍.

查看答案和解析>>

1.B  2.D  3.A  4.B  5.C  6.D  7.A  8.B  9.C  10.C

11.2   12.   13.0  14.  15.96

16.解:(1)依題意:,即,又,

∴  ,∴ 

(2)由三角形是銳角三角形可得,即

     由正弦定理得∴  ,

∴  ,

  ∵   ,∴ 

∴      即。

17.設,則=,,

,又,

.

(2)=,

18解:(1)記數(shù)列的前項和為,則依題有

,故

故數(shù)列的通項為.故,易知,

(2)假設存在實數(shù),使得當時,對任意恒成立,則對任意都成立,,,

,有.故存在最大的實數(shù)符合題意.

19. 20. 解:設該學生選修甲、乙、丙的概率分別為x、y、z

       依題意得                      

       (1)若函數(shù)R上的偶函數(shù),則=0       

       當=0時,表示該學生選修三門功課或三門功課都沒選.

      

       =0.4×0.5×0.6+(1-0.4)(1-0.5)(1-0.6)=0.24

       ∴事件A的概率為0.24                                                      

   (2)依題意知的的取值為0和2由(1)所求可知

P(=0)=0.24 P(=2)=1- P(=0)=0.76

的分布列為

0

2

P

0.24

0.76

的數(shù)學期望為E=0×0.24+2×0.76=1.52                       

20. (1)由題意可知,又,解得,

橢圓的方程為;

(2)由(1)得,所以.假設存在滿足題意的直線,設的方程為

,代入,得,

,則   ①,

,

的方向向量為,

; 時,,即存在這樣的直線;

時,不存在,即不存在這樣的直線 .

21.(1) 必要性 : ,又  ,即

充分性 :設 ,對用數(shù)學歸納法證明

        當時,.假設

        則,且

,由數(shù)學歸納法知對所有成立

     (2) 設 ,當時,,結論成立

         當 時,

          ,由(1)知,所以  且   

         

         

         

(3) 設 ,當時,,結論成立

 當時,由(2)知

  w.w.w.k.s.5.u.c.o.m    


同步練習冊答案