題目列表(包括答案和解析)
已知
(1)求函數(shù)在上的最小值
(2)對一切的恒成立,求實數(shù)a的取值范圍
(3)證明對一切,都有成立
【解析】第一問中利用
當時,在單調遞減,在單調遞增,當,即時,,
第二問中,,則設,
則,單調遞增,,,單調遞減,,因為對一切,恒成立,
第三問中問題等價于證明,,
由(1)可知,的最小值為,當且僅當x=時取得
設,,則,易得。當且僅當x=1時取得.從而對一切,都有成立
解:(1)當時,在單調遞減,在單調遞增,當,即時,,
…………4分
(2),則設,
則,單調遞增,,,單調遞減,,因為對一切,恒成立, …………9分
(3)問題等價于證明,,
由(1)可知,的最小值為,當且僅當x=時取得
設,,則,易得。當且僅當x=1時取得.從而對一切,都有成立
已知函數(shù).
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)設,若對任意,,不等式 恒成立,求實數(shù)的取值范圍.
【解析】第一問利用的定義域是
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函數(shù)的單調遞增區(qū)間是(1,3);單調遞減區(qū)間是
第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。
解: (I)的定義域是 ......1分
............. 2分
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函數(shù)的單調遞增區(qū)間是(1,3);單調遞減區(qū)間是 ........4分
(II)若對任意不等式恒成立,
問題等價于, .........5分
由(I)可知,在上,x=1是函數(shù)極小值點,這個極小值是唯一的極值點,
故也是最小值點,所以; ............6分
當b<1時,;
當時,;
當b>2時,; ............8分
問題等價于 ........11分
解得b<1 或 或 即,所以實數(shù)b的取值范圍是
已知函數(shù),
(1)求函數(shù)的定義域;
(2)求函數(shù)在區(qū)間上的最小值;
(3)已知,命題p:關于x的不等式對函數(shù)的定義域上的任意恒成立;命題q:指數(shù)函數(shù)是增函數(shù).若“p或q”為真,“p且q”為假,求實數(shù)m的取值范圍.
【解析】第一問中,利用由 即
第二問中,,得:
,
第三問中,由在函數(shù)的定義域上 的任意,,當且僅當時等號成立。當命題p為真時,;而命題q為真時:指數(shù)函數(shù).因為“p或q”為真,“p且q”為假,所以
當命題p為真,命題q為假時;當命題p為假,命題q為真時分為兩種情況討論即可 。
解:(1)由 即
(2),得:
,
(3)由在函數(shù)的定義域上 的任意,,當且僅當時等號成立。當命題p為真時,;而命題q為真時:指數(shù)函數(shù).因為“p或q”為真,“p且q”為假,所以
當命題p為真,命題q為假時,
當命題p為假,命題q為真時,,
所以
已知函數(shù)f(x)=,為常數(shù)。
(I)當=1時,求f(x)的單調區(qū)間;
(II)若函數(shù)f(x)在區(qū)間[1,2]上為單調函數(shù),求的取值范圍。
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。第一問中,利用當a=1時,f(x)=,則f(x)的定義域是然后求導,,得到由,得0<x<1;由,得x>1;得到單調區(qū)間。第二問函數(shù)f(x)在區(qū)間[1,2]上為單調函數(shù),則或在區(qū)間[1,2]上恒成立,即即,或在區(qū)間[1,2]上恒成立,解得a的范圍。
(1)當a=1時,f(x)=,則f(x)的定義域是
。
由,得0<x<1;由,得x>1;
∴f(x)在(0,1)上是增函數(shù),在(1,上是減函數(shù)!6分
(2)。若函數(shù)f(x)在區(qū)間[1,2]上為單調函數(shù),
則或在區(qū)間[1,2]上恒成立。∴,或在區(qū)間[1,2]上恒成立。即,或在區(qū)間[1,2]上恒成立。
又h(x)=在區(qū)間[1,2]上是增函數(shù)。h(x)max=(2)=,h(x)min=h(1)=3
即,或。 ∴,或。
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com