平面向量也叫二維向量.二維向量的坐標(biāo)表示及其運算可以推廣到n維向量.n維向量可用 (....-.)表示.設(shè)(....-.).設(shè) (....-.).a與b夾角的余弦值為 查看更多

 

題目列表(包括答案和解析)

平面向量也叫二維向量,二維向量的坐標(biāo)表示及其運算可以推廣到n(n≥3)維向量,n維向量可用(x1,x2,x3,…xn)表示,設(shè)
a
=(a1,a2,a3,…an),規(guī)定向量 
a
b
  夾角θ的余弦cosθ=
aibi
ai2bi2 
a
=(1,1,1,1),
b
=(-1,1,1,1) 時,cosθ=( 。
A、-
1
2
B、1
C、2
D、
1
2

查看答案和解析>>

平面向量也叫二維向量,二維向量的坐標(biāo)表示及其運算可以推廣到n(n≥3)維向量,n維向量可用(x1,x2,x3,x4,…,xn)表示.設(shè)
a
=(a1,a2,a3,a4,…,an),
b
=(b1,b2,b3,b4,…,bn),規(guī)定向量
a
b
夾角θ的余弦為cosθ=
n
i=1
aibi
(
n
i=1
a
2
1
)(
n
i=1
b
2
1
.已知n維向量
a
,
b
,當(dāng)
a
=(1,1,1,1,…,1),
b
=(-1,-1,1,1,1,…,1)時,cosθ等于( 。

查看答案和解析>>

平面向量也叫二維向量,二維向量的坐標(biāo)表示及其運算可以推廣到n(n≥3)維向量,n維向量可用(x1,x2,x3,x4,…,xn)表示.設(shè)
a
=(a1,a2,a3,a4,…,an),
b
=(b1,b2,b3,b4,…,bn),規(guī)定向量
a
b
夾角θ的余弦為cosθ=
n
i=1
aibi
(
n
i=1
a
2
i
)(
n
i=1
b
2
i
)
.已知n維向量
a
,
b
,當(dāng)
a
=(1,1,1,1,…,1),
b
=(-1,-1,1,1,1,…,1)時,cosθ等于
n-4
n
n-4
n

查看答案和解析>>

平面向量也叫二維向量,二維向量的坐標(biāo)表示及其運算可以推廣到n(n≥3)維向量,n維向量可用(x1,x2,x3,x4,…,xn)表示.設(shè)=(a1,a2,a3,a4,…,an),=(b1,b2,b3,b4,…,bn),規(guī)定向量夾角θ的余弦為cosθ=.已知n維向量,當(dāng)=(1,1,1,1,…,1),=(-1,-1,1,1,1,…,1)時,cosθ等于______________

 

查看答案和解析>>

平面向量也叫二維向量,二維向量的坐標(biāo)表示及其運算可以推廣到維向量,n維向量可用規(guī)定向量

    =                                                                       (    )

       A.                 B.                 C.                D.

 

查看答案和解析>>

1、C  2、A  3、C  4、A  5、C  6、B  7、B  8、D  9、A  10、C  11、B  12、D

13、1.56   14、5   15、

 16、(1)斜面的中面面積等于斜面面積的四分之一;(2)三個直角面面積的平方和等于斜面面積的平方;(3)斜面與三個直角面所成二面角的余弦平方和等于1,等等

17、解: (Ⅰ)   =
  =   =   =

  (Ⅱ) ∵   ∴ ,
  又∵   ∴   當(dāng)且僅當(dāng) b=c=時,bc=,故bc的最大值是.

18、

19、(1)證明:底面           

          

平面平面

(2)解:因為,且,

      可求得點到平面的距離為

(3)解:作,連,則為二面角的平面角

      設(shè),,在中,求得,

同理,,由余弦定理

解得, 即=1時,二面角的大小為

20、

21、解:設(shè)

由題意可得:

                                 

相減得:

                                 

∴直線的方程為,即

(2)設(shè),代入圓的方程整理得:

是上述方程的兩根

             

同理可得:     

.                             

22、解:(1)由題意,在[]上遞減,則解得  

所以,所求的區(qū)間為[-1,1]        

(2)取,即不是上的減函數(shù)

,

不是上的增函數(shù)

所以,函數(shù)在定義域內(nèi)不單調(diào)遞增或單調(diào)遞減,從而該函數(shù)不是閉函數(shù)

(3)若是閉函數(shù),則存在區(qū)間[],在區(qū)間[]上,函數(shù)的值域為[],即為方程的兩個實數(shù)根,

即方程有兩個不等的實根

當(dāng)時,有,解得

當(dāng)時,有,無解

綜上所述,

 

 

 


同步練習(xí)冊答案