A.個 B.個 C.個 D.個 查看更多

 

題目列表(包括答案和解析)

A、B是拋物線C:y2=2px(p>0)上的兩個動點,F(xiàn)是焦點,直線AB不垂直于x軸且交x軸于點D.
(1)若D與F重合,且直線AB的傾斜角為
π
4
,求證:
OA
OB
p2
是常數(shù)(O是坐標原點);
(2)若|AF|+|BF|=8,線段AB的垂直平分線恒過定點Q(6,0),求拋物線C的方程.

查看答案和解析>>

A為三角形ABC的一個內(nèi)角,若sinA+cosA=
2
5
,則這個三角形的形狀為( 。
A、銳角三角形
B、鈍角三角形
C、等腰直角三角形
D、等腰三角形

查看答案和解析>>

a<0是方程ax2+2x+1=0至少有一個負數(shù)根的( 。
A、必要不充分條件B、充分不必要條件C、充分必要條件D、既不充分也不必要條件

查看答案和解析>>

5、A、B、C三個命題,如果A是B的充要條件,C是B的充分不必要條件,則C是A的( 。

查看答案和解析>>

A(1,0,1),B(4,4,6),C(2,2,3),D(10,14,17)這四個點是否共面
 
(共面或不共面).

查看答案和解析>>

一、選擇題 ABCBD  DBCDC  CC

二、填空題

13.6;;14.;15.,1)∪(1,+∞);16。①③④

三、解答題

17. 解:(1)∵   , 且與向量所成角為

∴   ,   ∴  ,          

,∴  ,即。  

   (2)由(1)可得:

 

∵  ,∴  ,

∴  ,∴  當=1時,A=     

∴AB=2, 則

18.解:(1)P=           

   (2)隨機變量的取值為0, 1, 2, 3.

由n次獨立重復(fù)試驗概率公式

    

  

 

隨機變量的分布列是

0

1

2

3

的數(shù)學(xué)期望是    

19.(I)解:取CE中點P,連結(jié)FP、BP,

∵F為CD的中點,∴FP//DE,且FP=

又AB//DE,且AB=,∴AB//FP,且AB=FP,

∴ABPF為平行四邊形,∴AF//BP!2分

又∵AF平面BCE,BP平面BCE,∴AF//平面BCE。 …………4分

   (II)∵△ACD為正三角形,∴AF⊥CD。

∵AB⊥平面ACD,DE//AB,∴DE⊥平面ACD,又AF平面ACD,

∴DE⊥AF。又AF⊥CD,CD∩DE=D,∴AF⊥平面CDE。 …………6分

又BP//AF,∴BP⊥平面CDE。又∵BP平面BCE,

∴平面BCE⊥平面CDE。 …………8分

   (III)由(II),以F為坐標原點,F(xiàn)A,F(xiàn)D,F(xiàn)P所在的直線分別為x,y,z軸(如圖),建立空間直角坐標系F―xyz.設(shè)AC=2,

則C(0,―1,0),………………9分

 ……10分

顯然,為平面ACD的法向量。

設(shè)平面BCE與平面ACD所成銳二面角為

,即平面BCE與平面ACD所成銳二面角為45°!12分

20.(1)

          時,,即

      當時,

      即 上是減函數(shù)的充要條件為    ………(4分)

 (2)由(1)知,當為減函數(shù),的最大值為;

     當時,

 ,當

 即在是增函數(shù),在是減函數(shù),取最大值,最大值為  …(8分)

 (3)在(1)中取,即

    由(1)知上是減函數(shù)

    ,即

    ,解得:

   故所求不等式的解集為[     ……………(12分)

21. 解:(1),,

,∴數(shù)列是首項為,公比為的等比數(shù)列.

(2)依(Ⅰ)的結(jié)論有,即.

.     

(3),又由(Ⅱ)有

( ) =

=( 1-)<∴ 對任意的.   

22.解:(I)由條件知:  ………2分 

       得………4分    

(II)依條件有:………5分,    由

  8分

,………10分   

 由弦長公式得

       由 

 


同步練習(xí)冊答案