(2)設曲線C與y軸的正半軸的交點為M.過點M作一條直線l與曲線C交于另一點N.當|MN|=時.求直線l的方程. 查看更多

 

題目列表(包括答案和解析)

如圖,曲線G的方程為y2=2xy≥0).以原點為圓心,以tt >0)為半徑的圓分別與曲線Gy軸的正半軸相交于點A與點B.直線ABx軸相交于點C.

(Ⅰ)求點A的橫坐標a與點C的橫坐標c的關系式;

(Ⅱ)設曲線G上點D的橫坐標為a+2,求證:直線CD的斜率為定值.

查看答案和解析>>

19.如圖,曲線G的方程為y2=2x(y≥0).以原點為圓心,以tt >0)為半徑的圓分別與曲線Gy軸的正半軸相交于點A與點B.直線ABx軸相交于點C.

(Ⅰ)求點A的橫坐標a與點C的橫坐標c的關系式;

(Ⅱ)設曲線G上點D的橫坐標為a+2,求證:直線CD的斜率為定值.

查看答案和解析>>

如圖,曲線G的方程為y2=20(y≥0).以原點為圓心,以tt >0)為半徑的圓分別與曲線Gy軸的正半軸相交于點A與點B.直線ABx軸相交于點C.

(Ⅰ)求點A的橫坐標a與點C的橫坐標c的關系式;

(Ⅱ)設曲線G上點D的橫坐標為a+2,求證:直線CD的斜率為定值.

查看答案和解析>>

如圖,曲線G的方程為y2=2x(y≥0).以原點為圓心,以t(t >0)為半徑的圓分別與曲線G和y軸的正半軸相交于點A與點B,直線AB與x軸相交于點C。
(1)求點A的橫坐標a與點C的橫坐標c的關系式;
(2)設曲線G上點D的橫坐標為a+2,求證:直線CD的斜率為定值。

查看答案和解析>>

(1)以直角坐標系的原點為極點,x軸的正半軸為極軸,并在兩種坐標系中取相同的長度單位.已知直線的極坐標方程為θ=
π
4
(ρ∈R)
,它與曲線
x=2+
5
cosθ
y=1+
5
sinθ
為參數(shù))相交于兩點A和B,求|AB|.
(2)在直角坐標系xOy中,直線L的參數(shù)方程為
x=3-
5
5
t
y=-2+
2
5
5
t
(t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=4cosθ.設圓C與直線L交于點A、B.若點P的坐標為(3,-2),求|PA|+|PB|及|PA|•|PB|.

查看答案和解析>>

一. 單項選擇題

題號

1

2

3

4

5

6

7

8

9

10

答案

D

A

C

D

B

D

A

B

D

C

二.填空題

11、         12、25           13、         14、

15、29π    

三、解答題:

16、解:(1)

                =…………….4分

的最小正周期為           ……………5分

的對稱中心為      …………….6分

(2)   

 ……………..8分

 

      由     ……………10分   

                     ……………….12分

17、解:(1)五項指標檢測相當于5次獨立重復試驗,當有二項及二項以上不合格時,該批食品不能出廠,故不能出廠的概率為:

        ……………………………….4分

(2)若須五項全部檢測完畢,才能確定能否出廠,則相當于前四項檢測中恰有一項不合格的情形,故所求概率為:

   …………………………………..8分

        (3)由(1)知該批食品能出廠的概率為0.74不能出廠的概率為0.26

          故該廠生產(chǎn)一批食品獲利的分布列為

10000

-5000

0.74

0.26

                                                      ….………….10分

獲利的期望為 …………..12分

18、解:(1)由已知

   …………2分

    ∴             ……4分

即所求曲線方程是:                           …………6分

(2)由(1)求得點M(0,1)。顯然直線l與x軸不垂直。

故可設直線l的方程為y=kx+1 ,設M, N      …………8分

  消去y得:  解得  

解得:k=±1  ………………11分                             …………12分

∴所求直線的方程為                …………14分

19, 解:解法一:(1)∵BF⊥平面ACE。  ∴BF⊥AF

∵二面角D―AB―E為直二面角。且CB⊥AB。

∴CB⊥平面ABE   ∴CB⊥AE   ∴AE⊥平面BCE           ……………4分

(2)連結(jié)BD交AC交于G,連結(jié)FG

∵正方形ABCD邊長為2!郆G⊥AC  BG=

∵BF⊥平面ACE。  由三垂線定理的逆定理得

FG⊥AC。  ∴∠BGF是二面B―AC―E的平面角              …………7分

由(1)和AE⊥平面BCE

又∵AE=EB

∴在等腰直角三角形AEB中,BE=

又∵Rt△BCE中,

  ∴Rt△BFG中

∴二面角B―AC―E的正弦值等于                        ……………10分

(3)過點E作ED⊥AB交AB于點O,  OE=1

∵二面角D―AB―E為直二面角    ∴EO⊥平面ABCD

設點D到平面ACE的距離為h。   ∵VD-ACE=VE-ACD

即點D到平面ACE的距離為                          ………………14分

 

20、解:(1)由 有唯一解

  

                                 …………4分

(2)由                 …………6分

  

數(shù)列 是以首項為,公差為的等差數(shù)列          …………8 分

                 ………10分

(3)由       …………12分

=

              

              

                                              …………14分

21、解:2.解:(Ⅰ)由條件得矩陣,

它的特征值為,對應的特征向量為

(Ⅱ),橢圓的作用下的新曲線的方程為.(7分)

3.(坐標系與參數(shù)方程)求直線)被曲線所截的弦長,將方程,分別化為普通方程:

,………(4分)

……(7分)

 

 

 

 

 


同步練習冊答案