如圖所示.在長(zhǎng)方體中..是棱上的點(diǎn).且. 查看更多

 

題目列表(包括答案和解析)

 如圖所示,在長(zhǎng)方體中,,,是棱上一點(diǎn),

(1)若為CC1的中點(diǎn),求異面直線A1M和C1D1所成的角的正切值;

(2)是否存在這樣的,使得平面ABM⊥平面A1B1M,若存在,求出的值;若不存在,請(qǐng)說明理由。

 

查看答案和解析>>

如圖所示,在長(zhǎng)方體中,,,是棱上一點(diǎn),

(1)若為CC1的中點(diǎn),求異面直線A1M和C1D1所成的角的正切值;
(2)是否存在這樣的,使得平面ABM⊥平面A1B1M,若存在,求出的值;若不存在,請(qǐng)說明理由。

查看答案和解析>>

如圖所示,在長(zhǎng)方體中,,,是棱上一點(diǎn),

(1)若為CC1的中點(diǎn),求異面直線A1M和C1D1所成的角的正切值;
(2)是否存在這樣的,使得平面ABM⊥平面A1B1M,若存在,求出的值;若不存在,請(qǐng)說明理由。

查看答案和解析>>

如圖所示,在長(zhǎng)方體ABCD—A1B1C1D1中,AB=BC=1,BB1=2,

E是棱CC1上的點(diǎn),且CE=CC1.

(1)求三棱錐C—BED的體積;

(2)求證:A1C⊥平面BDE.

查看答案和解析>>

如圖所示,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=1,BC=2,CC1=5,M為棱CC1上一點(diǎn).
(1)若數(shù)學(xué)公式,求異面直線A1M和C1D1所成角的正切值;
(2)是否存在這樣的點(diǎn)M使得BM⊥平面A1B1M?若存在,求出C1M的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

答案

D

A

B

C

B

B

B

D

二、填空題

9.1;      10. ;   11.12;    12.;    13.;   14.

三、解答題

15.解:(Ⅰ)由,根據(jù)正弦定理得

所以,…………………………………………………………………………………………4分

為銳角三角形得.                 …………………………………………7分

(Ⅱ)根據(jù)余弦定理,得.           ………10分

所以,.                ……………………………………………………………12分

 

16.解:(1)由題意可知

當(dāng)時(shí), .                   ……3分

當(dāng)時(shí),,亦滿足上式.                            ……5分

∴數(shù)列的通項(xiàng)公式為).                            ……6分

(2)由(1)可知,                                                ……7分

∴數(shù)列是以首項(xiàng)為,公比為的等比數(shù)列,                           ……9分

.                                   ……12分

 

17.

 

……5分

 

 

 

 

 

 

 

 

……12分

 

……14分

 

 

 

 

 

 

 

 

 

<source id="tiv3y"><legend id="tiv3y"><rp id="tiv3y"></rp></legend></source>
  • <noscript id="tiv3y"></noscript>

      ……12分

       

      ……14分

       

       

      18.解:(1)由   …………………2分

      ,, ……4分

      ,

       

      函數(shù)的單調(diào)區(qū)間如下表:

      (-¥,-

      (-,1)

      1

      (1,+¥)

      0

      0

      ­

      極大值

      ¯

      極小值

      ­

      所以函數(shù)的遞增區(qū)間是(-¥,-)與(1,+¥),遞減區(qū)間是(-,1)。      …9分

      (2)

      當(dāng)時(shí),為極大值,而,則為最大值。

      要使恒成立,只需;

      解得。                                        ……………………14分

      19.解:(1)設(shè)所求直線的斜率為,其方程為,代入橢圓方程并化簡(jiǎn)得:

                      …………………………2分

              設(shè)直線l與橢圓交于P1x1,y1)、P2x2,y2),則,

      因?yàn)椋?,2)是直線l被橢圓所截得的線段的中點(diǎn),則

      ,解得。         …………………………………………6分

      由點(diǎn)斜式可得l的方程為x+2y-8=0.               ………………………………………8分

      (2)由(1)知,,     ………………………10分

             ……………14分

       

       

       

       

      20. 解:設(shè)AN的長(zhǎng)為x米(x >2)

                   ∵,∴|AM|=

      ∴SAMPN=|AN|•|AM|=         …………………………………………………………4分

      (1)由SAMPN > 32 得  > 32 ,

               ∵x >2,∴,即(3x-8)(x-8)> 0

               ∴         即AN長(zhǎng)的取值范圍是……………………………8分

      (2)令y=,則y′= ……………………………………… 10分

      ∵當(dāng),y′< 0,∴函數(shù)y=上為單調(diào)遞減函數(shù),

      ∴當(dāng)x=3時(shí)y=取得最大值,即(平方米)

      此時(shí)|AN|=3米,|AM|=米      ……………………………………………………… 14分

       

       

       


      同步練習(xí)冊(cè)答案