(1)求的值與函數(shù)的單調(diào)區(qū)間, 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是[-2,2]。

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)若的圖象與直線恰有三個公共點,求m的取值范圍。

查看答案和解析>>

已知函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是[-2,2]。

(I)求函數(shù)的解析式;

(II)若的圖象與直線有三個公共點,求m的取值范圍。

查看答案和解析>>

函數(shù)f(x)=x3+ax2+bx+c在x=-
23
與x=1時都取得極值
(1)求a,b的值;
(2)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

函數(shù)f(x)=
1
2
sin2xsinφ+cos2xcosφ-
1
2
sin(
π
2
+φ)(0<φ<π)
,其圖象過點(
π
6
,
1
2
).
(I)求φ的值;
(Ⅱ)將函數(shù)y=f(x)的圖象上各點的橫坐標(biāo)縮短到原來的
1
2
,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的周期與單調(diào)遞減區(qū)間.

查看答案和解析>>

精英家教網(wǎng)函數(shù)f(x)=asin(wx+
π
6
)
(A>0,w>0)的圖象的一部分如圖所示.
(1)求A,w的值,并寫出這個函數(shù)的單調(diào)增區(qū)間;
(2)當(dāng)x∈[-
π
2
,0]
時,討論函數(shù)y=f(x)與y=a(a為常數(shù))的圖象的交點的個數(shù).

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

答案

D

A

B

C

B

B

B

D

二、填空題

9.1;      10. ;   11.12;    12.;    13.;   14.

三、解答題

15.解:(Ⅰ)由,根據(jù)正弦定理得,

所以,…………………………………………………………………………………………4分

為銳角三角形得.                 …………………………………………7分

(Ⅱ)根據(jù)余弦定理,得.           ………10分

所以,.                ……………………………………………………………12分

 

16.解:(1)由題意可知

當(dāng)時, .                   ……3分

當(dāng)時,,亦滿足上式.                            ……5分

∴數(shù)列的通項公式為).                            ……6分

(2)由(1)可知,                                                ……7分

∴數(shù)列是以首項為,公比為的等比數(shù)列,                           ……9分

.                                   ……12分

 

17.

 

……5分

 

 

 

 

 

 

 

 

……12分

 

……14分

 

 

 

 

 

 

 

 

 

……12分

 

……14分

 

 

18.解:(1)由   …………………2分

, ……4分

,

 

函數(shù)的單調(diào)區(qū)間如下表:

(-¥,-

(-,1)

1

(1,+¥)

0

0

­

極大值

¯

極小值

­

所以函數(shù)的遞增區(qū)間是(-¥,-)與(1,+¥),遞減區(qū)間是(-,1)。      …9分

(2),

當(dāng)時,為極大值,而,則為最大值。

要使恒成立,只需

解得。                                        ……………………14分

19.解:(1)設(shè)所求直線的斜率為,其方程為,代入橢圓方程并化簡得:

                …………………………2分

        設(shè)直線l與橢圓交于P1x1,y1)、P2x2,y2),則,

因為(4,2)是直線l被橢圓所截得的線段的中點,則,

,解得。         …………………………………………6分

由點斜式可得l的方程為x+2y-8=0.               ………………………………………8分

(2)由(1)知,,     ………………………10分

       ……………14分

 

 

 

 

20. 解:設(shè)AN的長為x米(x >2)

             ∵,∴|AM|=

∴SAMPN=|AN|•|AM|=         …………………………………………………………4分

(1)由SAMPN > 32 得  > 32 ,

         ∵x >2,∴,即(3x-8)(x-8)> 0

         ∴         即AN長的取值范圍是……………………………8分

(2)令y=,則y′= ……………………………………… 10分

∵當(dāng),y′< 0,∴函數(shù)y=上為單調(diào)遞減函數(shù),

∴當(dāng)x=3時y=取得最大值,即(平方米)

此時|AN|=3米,|AM|=米      ……………………………………………………… 14分

 

 

 


同步練習(xí)冊答案