10.“ 是“ 的 A.充分但不必要條件 B.必要但不充分條件 C.充要條件 D.既不充分也不必要條件 查看更多

 

題目列表(包括答案和解析)

 

一、選擇題:本大題共12小題,每小題5分,滿分60分。

1.C    2.D   3.A    4.B    5.A    6.D    7.B    8.C    9.A  

10.B  11.D  12.C

二、填空題:本大題共4小題,每小題5分,滿分20分。

13.64                            14.                     15.4                       16.

三、解答題:本大題共6小題,滿分70分。

17.(本小題滿分10分)

   (1)解:∵                                 2分

       ∴

       ∴

       ∴                                                                                           5分

   (2)解:∵

       ∴

       又∵                                                              7分

       ∵

       ∵

       =                                                                                  10分

18.(本小題滿分12分)

解:用Ai表示事件:一天之內(nèi)第i個部件需要調(diào)整(i=1、2、3),

,

表示一天之內(nèi)需要調(diào)整的部件數(shù),則

   (1)……3分

   (2)

……………………12分

答:一天之內(nèi)恰有一個部件需要調(diào)整的概率是0.398;一天之內(nèi)至少有兩個部件需要調(diào)整的概率是0.098.

19.(本小題滿分12分)

解法一:

   (1)證明:在直三棱柱ABC―A1B1C1中,

<pre id="mki4u"><pre id="mki4u"></pre></pre><nav id="mki4u"></nav><optgroup id="mki4u"><del id="mki4u"></del></optgroup>
<table id="mki4u"><input id="mki4u"></input></table>
  • ∴CC1⊥AC,

    ∵BC=CC1,

    ∴BCC1B1­為正方形。

    ∴BC1⊥B1C…………………………2分

    又∵∠ACB=90°,

    ∴AC⊥BC

    ∴AC⊥平面BCC1B1,

    ∵B1C為AB1在平面BCC1B1內(nèi)的射影,BC1⊥B1C,

    ∴AB1⊥BC1,………………………………4分

    (2)解:

    ∵BC//B1C,

    ∴BC//平面AB1C1,

    ∴點B到平面AB1C1的距離等于點C到平面AB1C1的距離 ………………5分

    連結(jié)A1C交AC1于H,

    ∵ACC1A1是正方形,

    ∴CH⊥AC1。

    ∵B1C1⊥A1C1,B1C1⊥CC1

    ∴B1C1⊥A1C1,B1C1⊥CC1

    ∴B1C1⊥平面ACC1A1。

    ∴B1C1⊥CH。

    ∴CH⊥平面AB1C1,

    ∴CH的長度為點C到平面AB1C1的距離。

    ∴點B到平面AB1C1的距離等于…………………………8分

    (3)取A1B1的中點D,連接C1D,

    ∵△A1B1C1是等腰三角形,所以C1D⊥A1B1

    又∵直三棱柱ABC―A1B1C1中,側(cè)面A1B1BA⊥底面A1B1C1

    ∴C1D⊥側(cè)面A1B1BA。

    作DE⊥AB1于E,;連C1E,則DE為C1E的平面A1B1BA內(nèi)的射影,

    ∴C1E⊥AB1

    ∴∠C1ED為二面角C1―AB1―A1的平面角!10分

    由已知C1D=

    即二面角C­­1―AB1―A1的大小為60°…………………………12分

    解法二:

    如圖建立直角坐標(biāo)系,其為C為坐標(biāo)原點,依題意A(2,0,0),B(0,2,0),A1(2,0,2),B1(0,2,2),C1(0,0,2)!2分

    (1)證明:

  • <noscript id="mki4u"></noscript>

      …………………………4分

      (2)解:

      設(shè)的法向量,

      ………………………………6分

      ,

      ∴點B到平面AB1C1的距離……………………8分

      (3)解設(shè)是平面A1AB1的法向量

      …………………………10分

      ∴二面角C1―AB―A1的大小為60°!12分

      20.(本小題滿分12分)

      (1)解:由已知得切點A的坐標(biāo)為…………2分

      ……………………5分

      (2)證明:由(1)得

      它的定義域為,

      上是增函數(shù)。

      是增函數(shù),……………………9分

      ………………………………12分

      21.(本小題滿分12分)

         (1)解:設(shè)橢圓E的方程為…………2分

      設(shè)

      為直角三角形,且,

      為直角三角形,且,

      ……………………4分

      ∴橢圓E的方程為…………………………6分

         (2)橢圓E的左準線方程為

      ∴線段PQ的中點M的橫坐標(biāo)為

      …………………………9分

      (3)解:

      點Q分有向線段,

      是以為自變量的增函數(shù),

      …………………………12分

       

       

      22.(本小題滿分12分)

         (1)當(dāng)x=y=0時,

      解得……………………1分

      當(dāng)x=1,時,

      ……………………3分

         (2)解:當(dāng)x是正整數(shù),y=1時,由已知得

      …………………………5分

      當(dāng)x是負整數(shù)時,取,

      是正整數(shù)

      .

      ……………………7分

      它所有的整數(shù)解為―3,―1,1,3.

      它們能構(gòu)成的兩個等差數(shù)列,即數(shù)列―3,―1,1,3以及數(shù)列3,1,―1,―3…12分

      請注意:以上參考答案與評分標(biāo)準僅供閱卷時參考,其他答案請參考評分標(biāo)準酌情給分。

       

       


      同步練習(xí)冊答案
          <rt id="mki4u"><table id="mki4u"></table></rt><option id="mki4u"></option>