(Ⅱ)若函數(shù).在處取得最大值.求的取值范圍. 查看更多

 

題目列表(包括答案和解析)

若函數(shù)處取得極值,

(1)求的值;

(2)求上的最大值和最小值.

 

查看答案和解析>>

若函數(shù)處取得極值,
(1)求的值;
(2)求上的最大值和最小值.

查看答案和解析>>

設函數(shù)f(x)=x2+aln(x+1)
(Ⅰ)若a=-4,寫出函數(shù)f(x)的單調區(qū)間;
(Ⅱ)若函數(shù)f(x)在[2,+∞)上單調遞增,求實數(shù)a的取值范圍;
(Ⅲ)若區(qū)間[0,1]上,函數(shù)f(x)在x=0處取得最大值,求實數(shù)a的取值范圍.

查看答案和解析>>

已知函數(shù),()在處取得最小值.

(Ⅰ)求的值;

(Ⅱ)若處的切線方程為,求證:當時,曲線不可能在直線的下方;

(Ⅲ)若,()且,試比較的大小,并證明你的結論.

 

查看答案和解析>>

已知函數(shù),,

(1)若函數(shù)在區(qū)間上不是單調函數(shù),試求的取值范圍;

(2)直接寫出(不需要給出演算步驟)函數(shù)的單調遞增區(qū)間;

(3)如果存在,使函數(shù)處取得最小值,試求的最大值.

 

查看答案和解析>>

一、選擇題

1.A      2.C      3.A      4.C      5.D      6.C    7.B     8.C      9.A      10.A

11.D    12.D

二、填空題

13.  10       14.         15.     4      16.

三、解答題

17.解:(Ⅰ)的內角和,由

       應用正弦定理,知

       ,

      

       因為

       所以,

       (Ⅱ)因為

                       

       所以,當,即時,取得最大值

 

 

18.解:(Ⅰ)總體平均數(shù)為

(Ⅱ)設表示事件“樣本平均數(shù)與總體平均數(shù)之差的絕對值不超過0.5”

從總體中抽取2個個體全部可能的基本結果有:,,,,,,,,,,.共15個基本結果.

事件包括的基本結果有:,,,,,.共有7個基本結果.

所以所求的概率為

.      

19.解:(Ⅰ)  由三視圖可知,四棱錐的底面是邊長為1的正方形,

側棱底面,且.             

,

即四棱錐的體積為.            

(Ⅱ) 連結,

是正方形,

的中點,且的中點

                  

   

                   

(Ⅲ)不論點在何位置,都有.                        

證明如下:∵是正方形,∴.      

底面,且平面,∴.    

又∵,∴平面.                      

∵不論點在何位置,都有平面

∴不論點在何位置,都有.                        

20.解:(Ⅰ) ,

          ,又,,

          數(shù)列是以為首項,為公比的等比數(shù)列.

(Ⅱ)由(Ⅰ)知,即,

,     ①

,②

由①②得

      

.又

數(shù)列的前項和

21.解:(Ⅰ)

因為函數(shù)的極值點,所以,即,因此

經(jīng)驗證,當時,是函數(shù)的極值點.

(Ⅱ)由題設,

在區(qū)間上的最大值為時,

,

故得

反之,當時,對任意,

,故在區(qū)間上的最大值為

綜上,的取值范圍為.   

 22.解:(Ⅰ)設橢圓的半焦距為,依題意

所求橢圓方程為

(Ⅱ)設,

(1)當軸時,

(2)當軸不垂直時,

設直線的方程為

由已知,得

代入橢圓方程,整理得,

,

當且僅當,即時等號成立.當時,,

綜上所述

最大時,面積取最大值

 

 

 


同步練習冊答案