(Ⅰ)求的值, (Ⅱ)求. 查看更多

 

題目列表(包括答案和解析)

20、(Ⅰ)求y=4x-2x+1的值域;
(Ⅱ)關(guān)于x的方程4x-2x+1+a=0有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

(Ⅰ)求極坐標(biāo)方程ρsin2θ-2•cosθ=0表示的曲線的焦點(diǎn)坐標(biāo);
(Ⅱ)設(shè)直線l:
x=2+3t
y=3+4t
(t為參數(shù))與題(Ⅰ)中的曲線交于A、B兩點(diǎn),若P(2,3),求|PA|•|PB|的值.

查看答案和解析>>

(Ⅰ)求f(x)=
x-2
x-3
+lg
4-x
的定義域;     
(Ⅱ)求g(x)=2 1-x3的值域.

查看答案和解析>>

(Ⅰ)求值:
16
81
-(
27
8
)
-
2
3
+(
3
-
2
)
0

(Ⅱ)已知:2a=5b=10,求
1
a
+
1
b
的值.

查看答案和解析>>

(Ⅰ)求值:0.16-
1
2
-(2009)0+16
3
4
+log2
2

(Ⅱ)解關(guān)于x的方程(log2x)2-2log2x-3=0

查看答案和解析>>

一、選擇題

1.C     2.D     3.B     4.B     5.C     6.D  7. B  8.C       9.D     10.B11.A      12.B

二、填空題

13.     14.-    15.[-1,2]     16.①④

三、解答題

17.解:(Ⅰ)由,得

   ∴

于是

(Ⅱ)由,得

   又∵,

,得

   

   ∴

18.(Ⅰ)證明:在直四棱柱中,

       連結(jié),

       ,

       四邊形是正方形.

      

       又,

       平面,

         平面

      

       平面,

       且

       平面,

       又平面,

      

(Ⅱ)連結(jié),連結(jié)

       設(shè),

       ,連結(jié),

       平面平面,

       要使平面,

       須使

       又的中點(diǎn).

       的中點(diǎn).

       又易知,

      

       即的中點(diǎn).

       綜上所述,當(dāng)的中點(diǎn)時(shí),可使平面

 

 

 

 

19.解:(Ⅰ)

 

  更 愛 好 體 育

更 愛 好 文 娛

合         計(jì)

男            生

       15

       10

      25

女            生

        5

       10

      15

合            計(jì)

       20

       20

      40

                                            …………………………………5分

(Ⅱ)恰好是一男一女的概率是:

(Ⅲ)

∴有85%的把握可以認(rèn)為性別與是否更喜歡體育有關(guān)系。 

20.解:(Ⅰ)設(shè)等比數(shù)列的公比為

,得,從而,

因?yàn)?sub>成等差數(shù)列,所以,

所以.故

(Ⅱ)

21.解:(Ⅰ),由已知

解得

,,

(Ⅱ)令,即,

在區(qū)間上恒成立,

22.解:(Ⅰ)設(shè)橢圓的半焦距為,依題意

,所求橢圓方程為

(Ⅱ)設(shè),

(1)當(dāng)軸時(shí),

(2)當(dāng)軸不垂直時(shí),

設(shè)直線的方程為

由已知,得

代入橢圓方程,整理得,

,

當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.當(dāng)時(shí),,

綜上所述

當(dāng)最大時(shí),面積取最大值

 

 


同步練習(xí)冊(cè)答案