題目列表(包括答案和解析)
(1)求證:平面EBD⊥平面ABCD;
(2)求點(diǎn)E到平面PBC的距離;
(3)求二面角A—BE—D的大小.
如圖,已知矩形ABCD所在平面外一點(diǎn)P,PA⊥平面ABCD,E、F分別是AB、
PC的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)求證:EF⊥CD;
(3)若ÐPDA=45°求EF與平面ABCD所成的角的大。
【解析】本試題主要考查了線(xiàn)面平行和線(xiàn)線(xiàn)垂直的運(yùn)用,以及線(xiàn)面角的求解的綜合運(yùn)用
第一問(wèn)中,利用連AC,設(shè)AC中點(diǎn)為O,連OF、OE在△PAC中,∵ F、O分別為PC、AC的中點(diǎn) ∴ FO∥PA …………①在△ABC中,∵ E、O分別為AB、AC的中點(diǎn) ∴ EO∥BC ,又 ∵ BC∥AD ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO ∴ EF∥平面PAD.
第二問(wèn)中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD 又 ∵ FO∥PA,PA⊥平面AC ∴ FO⊥平面AC∴ EO為EF在平面AC內(nèi)的射影 ∴ CD⊥EF.
第三問(wèn)中,若ÐPDA=45°,則 PA=AD=BC ∵ EOBC,F(xiàn)OPA
∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°
證:連AC,設(shè)AC中點(diǎn)為O,連OF、OE(1)在△PAC中,∵ F、O分別為PC、AC的中點(diǎn)∴ FO∥PA …………① 在△ABC中,∵ E、O分別為AB、AC的中點(diǎn) ∴ EO∥BC ,又 ∵ BC∥AD ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD
∵ EF Ì 平面EFO ∴ EF∥平面PAD.
(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD 又 ∵ FO∥PA,PA⊥平面AC ∴ FO⊥平面AC ∴ EO為EF在平面AC內(nèi)的射影 ∴ CD⊥EF.
(3)若ÐPDA=45°,則 PA=AD=BC ∵ EOBC,F(xiàn)OPA
∴ FO=EO 又 ∵ FO⊥平面AC ∴ △FOE是直角三角形 ∴ ÐFEO=45°
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com