.故....即. 查看更多

 

題目列表(包括答案和解析)

精英家教網如圖所示,正在亞丁灣執(zhí)行護航任務的某導彈護衛(wèi)艦,突然收到一艘商船的求救信號,緊急前往相關海域.到達相關海域O處后發(fā)現(xiàn),在南偏西20°、5海里外的洋面M處有一條海盜船,它正以每小時20海里的速度向南偏東40°的方向逃竄.某導彈護衛(wèi)艦當即施放載有突擊隊員的快艇進行攔截,快艇以每小時30海里的速度向南偏東θ°的方向全速追擊.請問:快艇能否追上海盜船?如果能追上,請求出sin(θ°+20°)的值;如果未能追上,請說明理由.(假設海面上風平浪靜、海盜船逃竄的航向不變、快艇運轉正常無故障等)

查看答案和解析>>

如圖所示,正在亞丁灣執(zhí)行護航任務的某導彈護衛(wèi)艦,突然收到一艘商船的求救信號,緊急前往相關海域.到達相關海域O處后發(fā)現(xiàn),在南偏西20°、5海里外的洋面M處有一條海盜船,它正以每小時20海里的速度向南偏東40°的方向逃竄.某導彈護衛(wèi)艦當即施放載有突擊隊員的快艇進行攔截,快艇以每小時30海里的速度向南偏東θ°的方向全速追擊.請問:快艇能否追上海盜船?如果能追上,請求出sin(θ°+20°)的值;如果未能追上,請說明理由.(假設海面上風平浪靜、海盜船逃竄的航向不變、快艇運轉正常無故障等)

查看答案和解析>>

如圖所示,正在亞丁灣執(zhí)行護航任務的某導彈護衛(wèi)艦,突然收到一艘商船的求救信號,緊急前往相關海域.到達相關海域O處后發(fā)現(xiàn),在南偏西20°、5海里外的洋面M處有一條海盜船,它正以每小時20海里的速度向南偏東40°的方向逃竄.某導彈護衛(wèi)艦當即施放載有突擊隊員的快艇進行攔截,快艇以每小時30海里的速度向南偏東θ°的方向全速追擊.請問:快艇能否追上海盜船?如果能追上,請求出sin(θ°+20°)的值;如果未能追上,請說明理由.(假設海面上風平浪靜、海盜船逃竄的航向不變、快艇運轉正常無故障等)

查看答案和解析>>

設函數(shù)

(Ⅰ) 當時,求的單調區(qū)間;

(Ⅱ) 若上的最大值為,求的值.

【解析】第一問中利用函數(shù)的定義域為(0,2),.

當a=1時,所以的單調遞增區(qū)間為(0,),單調遞減區(qū)間為(,2);

第二問中,利用當時, >0, 即上單調遞增,故上的最大值為f(1)=a 因此a=1/2.

解:函數(shù)的定義域為(0,2),.

(1)當時,所以的單調遞增區(qū)間為(0,),單調遞減區(qū)間為(,2);

(2)當時, >0, 即上單調遞增,故上的最大值為f(1)=a 因此a=1/2.

 

查看答案和解析>>

已知數(shù)列的前項和為,且 (N*),其中

(Ⅰ) 求的通項公式;

(Ⅱ) 設 (N*).

①證明: ;

② 求證:.

【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用關系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于

所以利用放縮法,從此得到結論。

解:(Ⅰ)當時,由.  ……2分

若存在,

從而有,與矛盾,所以.

從而由.  ……6分

 (Ⅱ)①證明:

證法一:∵

 

.…………10分

證法二:,下同證法一.           ……10分

證法三:(利用對偶式)設,

.又,也即,所以,也即,又因為,所以.即

                    ………10分

證法四:(數(shù)學歸納法)①當時, ,命題成立;

   ②假設時,命題成立,即,

   則當時,

    即

故當時,命題成立.

綜上可知,對一切非零自然數(shù),不等式②成立.           ………………10分

②由于,

所以,

從而.

也即

 

查看答案和解析>>


同步練習冊答案