(II)求函數(shù)在區(qū)間上的值域. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè),若對(duì)任意,,不等式 恒成立,求實(shí)數(shù)的取值范圍.

【解析】第一問(wèn)利用的定義域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是

第二問(wèn)中,若對(duì)任意不等式恒成立,問(wèn)題等價(jià)于只需研究最值即可。

解: (I)的定義域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是     ........4分

(II)若對(duì)任意不等式恒成立,

問(wèn)題等價(jià)于,                   .........5分

由(I)可知,在上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),

故也是最小值點(diǎn),所以;            ............6分

當(dāng)b<1時(shí),

當(dāng)時(shí),;

當(dāng)b>2時(shí),;             ............8分

問(wèn)題等價(jià)于 ........11分

解得b<1 或 或    即,所以實(shí)數(shù)b的取值范圍是 

 

查看答案和解析>>

(本小題滿分12分)已知函數(shù)

(I)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)a的取值范圍;

(II)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍.

(Ⅲ)求證:解:(1),其定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052512313679685506/SYS201205251234077812428021_ST.files/image007.png">,則,

當(dāng)時(shí),;當(dāng)時(shí),

在(0,1)上單調(diào)遞增,在上單調(diào)遞減,

即當(dāng)時(shí),函數(shù)取得極大值.                                       (3分)

函數(shù)在區(qū)間上存在極值,

 ,解得                                            (4分)

(2)不等式,即

(6分)

,則,

,即上單調(diào)遞增,                          (7分)

,從而,故上單調(diào)遞增,       (7分)

          (8分)

(3)由(2)知,當(dāng)時(shí),恒成立,即,

,則,                               (9分)

                                                                       (10分)

以上各式相加得,

,

                           

                                        (12分)

。

 

查看答案和解析>>

(本題滿分12分)已知函數(shù),

(I)求函數(shù)的遞增區(qū)間;

(II)求函數(shù)在區(qū)間上的值域。

 

查看答案和解析>>

(本題滿分12分)已知函數(shù)
(I)求函數(shù)的遞增區(qū)間;
(II)求函數(shù)在區(qū)間上的值域。

查看答案和解析>>

 

已知函數(shù)

   (I)求函數(shù) 的最小正周期和圖象的對(duì)稱軸方程;

   (II)求函數(shù)在區(qū)間上的值域。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

一、選擇題:

1―5  ACBBD    6―10  BCDAC

二、填空題:

11.60    12.       13.―     14.

15.2    16.    17.

三、解答題:

18.解:(I)

20090506

   (II)由于區(qū)間的長(zhǎng)度是為,為半個(gè)周期。

    又分別取到函數(shù)的最小值

所以函數(shù)上的值域?yàn)?sub>!14分

19.解:(1)該同學(xué)投中于球但未通過(guò)考核,即投藍(lán)四次,投中二次,且這兩次不連續(xù),其概率為                                 …………5分

   (2)在這次考核中,每位同學(xué)通過(guò)考核的概率為

      ………………10分

    隨機(jī)變量X服從其數(shù)學(xué)期望

  …………14分

20.解:(1)設(shè)FD的中點(diǎn)為G,則TG//BD,而B(niǎo)D//CE,

    當(dāng)a=5時(shí),AF=5,BD=1,得TG=3。

    又CE=3,TG=CE。

    *四邊形TGEC是平行四邊形。      

*CT//EG,TC//平面DEF,………………4分

   (2)以T為原點(diǎn),以射線TB,TC,TG分別為x,y,z軸,

建立空間直角坐標(biāo)系,則D(1,0,1),

              ………………6分

        則平面DEF的法向量n=(x,y,z)滿足:

  •  

        解之可得又平面ABC的法向量

    m=(0,0,1)

       

       即平面DEF與平面ABC相交所成且為銳角的二面角的余弦值為  ……9分

       (3)由P在DE上,可設(shè),……10分

        則

                       ………………11分

        若CP⊥平面DEF,則

        即

     

     

        解之得:                ……………………13分

        即當(dāng)a=2時(shí),在DE上存在點(diǎn)P,滿足DP=3PE,使CP⊥平面DEF!14分

    21.解:(1)因?yàn)?sub>        所以

        橢圓方程為:                          ………………4分

       (2)由(1)得F(1,0),所以。假設(shè)存在滿足題意的直線l,設(shè)l的方程為

       

        代入       ………………6分

        設(shè)   ①

                      ……………………8分

        設(shè)AB的中點(diǎn)為M,則

        。

         ……………………11分

        ,即存在這樣的直線l

        當(dāng)時(shí), k不存在,即不存在這樣的直線l;……………………14分

     

     

     

     

    22.解:(I) ……………………2分

        令(舍去)

        單調(diào)遞增;

        當(dāng)單調(diào)遞減。    ……………………4分

        為函數(shù)在[0,1]上的極大值。        ……………………5分

       (II)由

     ①        ………………………7分

    設(shè),

    依題意知上恒成立。

    都在上單調(diào)遞增,要使不等式①成立,

    當(dāng)且僅當(dāng)…………………………11分

       (III)由

    ,則

    當(dāng)上遞增;

    當(dāng)上遞減;

            …………………………16分

     

     


    同步練習(xí)冊(cè)答案
    <div id="juumk"></div>