可知在時.成立 查看更多

 

題目列表(包括答案和解析)

(14分)已知函數(shù),點,點,

(1)若,求函數(shù)的單調(diào)遞增區(qū)間;(2)若,函數(shù)處取得極值,且,求證:向量與向量不可能垂直;(3)若函數(shù)的導(dǎo)函數(shù)滿足:當(dāng)時,有恒成立,求函數(shù)的解析式。

查看答案和解析>>

已知函數(shù) ,
(1)當(dāng)  時,求函數(shù)  的最小值;
(2)當(dāng) 時,求證:無論取何值,直線均不可能與函數(shù)相切;
(3)是否存在實數(shù),對任意的 ,且,有恒成立,若存在求出的取值范圍,若不存在,說明理由。

查看答案和解析>>

已知函數(shù)
(1)當(dāng)  時,求函數(shù)  的最小值;
(2)當(dāng) 時,求證:無論取何值,直線均不可能與函數(shù)相切;
(3)是否存在實數(shù),對任意的 ,且,有恒成立,若存在求出的取值范圍,若不存在,說明理由。

查看答案和解析>>

已知函數(shù),

(1)求函數(shù)的定義域;

(2)求函數(shù)在區(qū)間上的最小值;

(3)已知,命題p:關(guān)于x的不等式對函數(shù)的定義域上的任意恒成立;命題q:指數(shù)函數(shù)是增函數(shù).若“p或q”為真,“p且q”為假,求實數(shù)m的取值范圍.

【解析】第一問中,利用由 即

第二問中,,得:

,

第三問中,由在函數(shù)的定義域上 的任意,,當(dāng)且僅當(dāng)時等號成立。當(dāng)命題p為真時,;而命題q為真時:指數(shù)函數(shù).因為“p或q”為真,“p且q”為假,所以

當(dāng)命題p為真,命題q為假時;當(dāng)命題p為假,命題q為真時分為兩種情況討論即可 。

解:(1)由 即

(2),得:

,

(3)由在函數(shù)的定義域上 的任意,當(dāng)且僅當(dāng)時等號成立。當(dāng)命題p為真時,;而命題q為真時:指數(shù)函數(shù).因為“p或q”為真,“p且q”為假,所以

當(dāng)命題p為真,命題q為假時,

當(dāng)命題p為假,命題q為真時,,

所以

 

查看答案和解析>>

(本題16分)已知函數(shù),其中e是自然數(shù)的底數(shù),,

(1)當(dāng)時,解不等式;

(2)若當(dāng)時,不等式恒成立,求a的取值范圍;

(3)當(dāng)時,試判斷:是否存在整數(shù)k,使得方程

   上有解?若存在,請寫出所有可能的k的值;若不存在,說明理由。

 

查看答案和解析>>


同步練習(xí)冊答案