當(dāng)時(shí).顯然成立. 查看更多

 

題目列表(包括答案和解析)

某學(xué)生在證明等差數(shù)列前n項(xiàng)和公式時(shí),證法如下:

(1)當(dāng)n=1時(shí),S1=a1顯然成立.

(2)假設(shè)n=k時(shí),公式成立,即

Sk=ka1,

當(dāng)n=k+1時(shí),

Sk+1=a1+a2+…+ak+ak+1

=a1+(a1+d)+(a1+2d)+…+a1+(k-1)d+a1+kd

=(k+1)a1+(d+2d+…+kd)

=(k+1)a1d

=(k+1)a1d.

∴n=k+1時(shí)公式成立.

∴由(1)(2)可知對(duì)n∈N+,公式成立.

以上證明錯(cuò)誤的是

[  ]
A.

當(dāng)n取第一個(gè)值1時(shí),證明不對(duì)

B.

歸納假設(shè)寫法不對(duì)

C.

從n=k到n=k+1的推理中未用歸納假設(shè)

D.

從n=k到n=k+1的推理有錯(cuò)誤

查看答案和解析>>

壯懷激烈千古恨 初出茅廬志已衰

  繼薩凱里之后,大概又過了半個(gè)世紀(jì).歐洲“數(shù)學(xué)之王”高斯的至友匈牙利數(shù)學(xué)家伏爾夫剛·鮑里埃,終身從事證明“第五公設(shè)”的研究,由于心血耗盡,毫無成效,便懷著沉重的心情,給那酷愛數(shù)學(xué)的兒子亞諾什·鮑耶(1802~1860)寫信,希望小鮑耶“不要再做克服平行公理的嘗試”.他忠告兒子說:“投身于這一貪得無度地吞人們的智慧、精力和心血的無底洞,白花時(shí)間在上面,一輩子也證不出這個(gè)命題來.”他滿腹心酸地寫到:“我經(jīng)過了這個(gè)毫無希望的夜的黑暗,我在這里面埋沒了人生的一切亮光、一切歡樂和一切希望.”最后告誡自己心愛的兒子說:“若再癡戀這一無止無休的勞作,必然會(huì)剝奪你生活的一切時(shí)間、健康、休息和幸福!”但是,年僅21歲的小鮑耶卻是敢向“無底洞”覓求真知的探索者.他認(rèn)真吸取前人失敗的教訓(xùn),初出茅廬就大顯身手.小鮑耶匠心獨(dú)運(yùn),大膽創(chuàng)新,決然將“第五公設(shè)”換成他自身的否定.從“三角形三個(gè)內(nèi)角和小于180°”這一令人瞠目結(jié)舌的假設(shè)出發(fā),建立起一套完整協(xié)調(diào)、天衣無縫的新幾何體系.小鮑耶滿懷激情地將自己的科學(xué)創(chuàng)見向父親報(bào)捷.老伏爾夫剛以之見教于至友高斯,不久,高斯復(fù)信鮑里埃,信中寫到:“如果我一開始便說我不能稱贊這樣的成果,你一定會(huì)感到驚訝.但是,我不能不這樣說,因?yàn)榉Q贊這些成果就等于稱贊我自己.令郎的這些工作,他走過的路,以及所獲得的成果,跟我過去30年至35年前的所思所得幾乎一模一樣.”高斯在回信結(jié)尾還開誠(chéng)布公地提到:“我自己的著作,盡管寫好的只是一部分,我本來也想發(fā)表,因?yàn)槲遗乱承┤说暮奥暎F(xiàn)在,有了朋友的兒子能夠這樣寫下來,免得他與我一樣湮沒,那是使我非常高興的.”這位當(dāng)代數(shù)學(xué)大師恐怕做夢(mèng)也沒想到,他這封推心置腹的信,竟會(huì)一舉撞毀初露鋒芒的數(shù)壇新星!

  高斯的復(fù)信給小鮑耶帶來意想不到的毀滅性打擊.躊躇滿志的鮑耶誤認(rèn)為高斯動(dòng)用自己擁有的崇高權(quán)威來壟斷和奪取這一新體系的發(fā)明優(yōu)先權(quán).為此,他痛心疾首,認(rèn)為自己心血澆灌出來的成果和嘔心瀝血的辛勤工作,竟得不到大家的理解、支持和同情.于是郁郁寡歡,大失所望,發(fā)誓拋棄了一切數(shù)學(xué)研究.

1.對(duì)于“數(shù)學(xué)之王”高斯給鮑耶的回信,你有什么看法呢?如果你是高斯,你該怎樣回信?

2.躊躇滿志的鮑耶誤認(rèn)為“高斯動(dòng)用自己擁有的崇高權(quán)威來壟斷和奪取這一新體系的發(fā)明優(yōu)先權(quán)”,進(jìn)而“郁郁寡歡,大失所望,發(fā)誓拋棄了一切數(shù)學(xué)研究”.你又有何看法呢?假如你是鮑耶,你又該怎么做呢?

查看答案和解析>>

下面玩擲骰子放球的游戲:若擲出1點(diǎn),甲盒中放入一球;若擲出2點(diǎn)或是3點(diǎn),乙盒中放入一球;若擲出4點(diǎn)或5點(diǎn)或6點(diǎn),丙盒中放入一球!設(shè)擲n次后,甲、乙、丙盒內(nèi)的球數(shù)分別為x,y,z
(1)當(dāng)n=3時(shí),求x、y、z成等差數(shù)列的概率;(2)當(dāng)n=6時(shí),求x、y、z成等比數(shù)列的概率;
(3)設(shè)擲4次后,甲盒和乙盒中球的個(gè)數(shù)差的絕對(duì)值為ξ,求Eξ.
分析:顯然題目描述的是獨(dú)立重復(fù)實(shí)驗(yàn),但不是我們熟悉的兩個(gè)而是三個(gè),因此需要運(yùn)用類比方法求解.

查看答案和解析>>

下面玩擲骰子放球的游戲:若擲出1點(diǎn),甲盒中放入一球;若擲出2點(diǎn)或是3點(diǎn),乙盒中放入一球;若擲出4點(diǎn)或5點(diǎn)或6點(diǎn),丙盒中放入一球!設(shè)擲n次后,甲、乙、丙盒內(nèi)的球數(shù)分別為x,y,z
(1)當(dāng)n=3時(shí),求x、y、z成等差數(shù)列的概率;(2)當(dāng)n=6時(shí),求x、y、z成等比數(shù)列的概率;
(3)設(shè)擲4次后,甲盒和乙盒中球的個(gè)數(shù)差的絕對(duì)值為ξ,求Eξ.
分析:顯然題目描述的是獨(dú)立重復(fù)實(shí)驗(yàn),但不是我們熟悉的兩個(gè)而是三個(gè),因此需要運(yùn)用類比方法求解.

查看答案和解析>>

下面玩擲骰子放球的游戲:若擲出1點(diǎn),甲盒中放入一球;若擲出2點(diǎn)或是3點(diǎn),乙盒中放入一球;若擲出4點(diǎn)或5點(diǎn)或6點(diǎn),丙盒中放入一球!設(shè)擲n次后,甲、乙、丙盒內(nèi)的球數(shù)分別為x,y,z
(1)當(dāng)n=3時(shí),求x、y、z成等差數(shù)列的概率;(2)當(dāng)n=6時(shí),求x、y、z成等比數(shù)列的概率;
(3)設(shè)擲4次后,甲盒和乙盒中球的個(gè)數(shù)差的絕對(duì)值為ξ,求Eξ.
分析:顯然題目描述的是獨(dú)立重復(fù)實(shí)驗(yàn),但不是我們熟悉的兩個(gè)而是三個(gè),因此需要運(yùn)用類比方法求解.

查看答案和解析>>


同步練習(xí)冊(cè)答案