題目列表(包括答案和解析)
【解析】若,必有.構造函數(shù):,則恒成立,故有函數(shù)在x>0上單調遞增,即a>b成立.其余選項用同樣方法排除.
【答案】A
已知函數(shù) R).
(Ⅰ)若 ,求曲線 在點 處的的切線方程;
(Ⅱ)若 對任意 恒成立,求實數(shù)a的取值范圍.
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。
第一問中,利用當時,.
因為切點為(), 則,
所以在點()處的曲線的切線方程為:
第二問中,由題意得,即即可。
Ⅰ)當時,.
,
因為切點為(), 則,
所以在點()處的曲線的切線方程為:. ……5分
(Ⅱ)解法一:由題意得,即. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因為,所以恒成立,
故在上單調遞增, ……12分
要使恒成立,則,解得.……15分
解法二: ……7分
(1)當時,在上恒成立,
故在上單調遞增,
即. ……10分
(2)當時,令,對稱軸,
則在上單調遞增,又
① 當,即時,在上恒成立,
所以在單調遞增,
即,不合題意,舍去
②當時,, 不合題意,舍去 14分
綜上所述:
(15分)已知是數(shù)列的前項和,(,),且.
(1)求的值,并寫出和的關系式;
(2)求數(shù)列的通項公式及的表達式;
(3)我們可以證明:若數(shù)列有上界(即存在常數(shù),使得對一切 恒成立)且單調遞增;或數(shù)列有下界(即存在常數(shù),使得對一切恒成立)且單調遞減,則存在.直接利用上述結論,證明:存在.
已知Sn是數(shù)列{an}的前n項和,(,),且.
(1)求a2的值,并寫出an和an+1的關系式;
(2)求數(shù)列{an}的通項公式及Sn的表達式;
(3)我們可以證明:若數(shù)列{bn}有上界(即存在常數(shù)A,使得bn<A對一切n∈N*恒成立)且單調遞增;或數(shù)列{bn}有下界(即存在常數(shù)B,使得bn>B對一切n∈N*恒成立)且單調遞減,則存在.直接利用上述結論,證明:存在.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com