①,②,③,④.A. ①③ B. ②③④ C. ①③④ D. ①②③ 查看更多

 

題目列表(包括答案和解析)

已知a, b, c, dR+,給出四個(gè)不等式:① ;② ;③ ;④,以其中一個(gè)作為條件,另一個(gè)作為結(jié)論,寫(xiě)出所有正確的推斷                     。(用表示)

查看答案和解析>>

已知a, b, c, dR+,給出四個(gè)不等式:① ;② ;③ ;④,以其中一個(gè)作為條件,另一個(gè)作為結(jié)論,寫(xiě)出所有正確的推斷                     。(用表示)

查看答案和解析>>

。】若函數(shù)在區(qū)間上的圖象為連續(xù)不斷的一條曲線,

則下列說(shuō)法正確的是(    )

A.若,不存在實(shí)數(shù)使得;

B.若,存在且只存在一個(gè)實(shí)數(shù)使得;

C.若,有可能存在實(shí)數(shù)使得;

D.若,有可能不存在實(shí)數(shù)使得;

查看答案和解析>>

A、B、C、D、E五人分四本不同的書(shū),每人至多分一本,求:

(1)A不分甲書(shū),B不分乙書(shū)的概率;

(2)甲書(shū)不分給A、B,乙書(shū)不分給C的概率。

查看答案和解析>>

“a,b為異面直線”是指:
,且a與b不平行;                ②a平面,b平面,且;
③a平面,b平面,且;      ④a平面,b平面
⑤不存在平面,能使a 且b 成立。
上述結(jié)論中,正確的是 

A.①④⑤正確B.①⑤正確C.②④正確D.①③④正確

查看答案和解析>>

1.解析:,故選A。

2.解析:∵

故選B。

3.解析:由,得,此時(shí),所以,,故選C。

4.解析:顯然,若共線,則共線;若共線,則,即,得,∴共線,∴共線是共線的充要條件,故選C。

5.解析:設(shè)公差為,由題意得,;,解得,故選C。

6.解析:∵雙曲線的右焦點(diǎn)到一條漸近線的距離等于焦距的,∴,又∵,∴,∴,∴雙曲線的離心率是。故選B.

7.解析:∵、為正實(shí)數(shù),∴,∴;由均值不等式得恒成立,,故②不恒成立,又因?yàn)楹瘮?shù)是增函數(shù),∴,故恒成立的不等式是①③④。故選C.

8.解析:∵,∴在區(qū)間上恒成立,即在區(qū)間上恒成立,∴,故選D。

9.解析:∵

,此函數(shù)的最小值為,故選C。

10.解析:如圖,∵正三角形的邊長(zhǎng)為,∴,∴,又∵,∴,故選D。

11.解析:∵在區(qū)間上是增函數(shù)且,∴其反函數(shù)在區(qū)間上是增函數(shù),∴,故選A

12.解析:如圖,①當(dāng)時(shí),圓面被分成2塊,涂色方法有20種;②當(dāng)時(shí),圓面被分成3塊,涂色方法有60種;

③當(dāng)時(shí),圓面被分成4塊,涂色方法有120種,所以m的取值范圍是,故選A。

13.解析:做出表示的平面區(qū)域如圖,當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),取得最大值5。

學(xué)科網(wǎng)(Zxxk.Com)14.解析:∵,∴時(shí),,又時(shí),滿足上式,因此,,

學(xué)科網(wǎng)(Zxxk.Com)15.解析:設(shè)正四面體的棱長(zhǎng)為,連,取的中點(diǎn),連,∵的中點(diǎn),∴,∴或其補(bǔ)角為所成角,∵,,∴,∴,又∵,∴,∴所成角的余弦值為。

學(xué)科網(wǎng)(Zxxk.Com)16.解析:∵,∴,∵點(diǎn)的準(zhǔn)線與軸的交點(diǎn),由向量的加法法則及拋物線的對(duì)稱(chēng)性可知,點(diǎn)為拋物線上關(guān)于軸對(duì)稱(chēng)的兩點(diǎn)且做出圖形如右圖,其中為點(diǎn)到準(zhǔn)線的距離,四邊形為菱形,∴,∴,∴,∴,∴,∴向量的夾角為

17.(10分)解析:(Ⅰ)由正弦定理得,,,…2分

,………4分

(Ⅱ)∵,,∴,∴,………………………6分

又∵,∴,∴,………………………8分

!10分

18.解析:(Ⅰ)∵,∴;……………………理3文4分

(Ⅱ)∵三科會(huì)考不合格的概率均為,∴學(xué)生甲不能拿到高中畢業(yè)證的概率;……………………理6文8分

(Ⅲ)∵每科得A,B的概率分別為,∴學(xué)生甲被評(píng)為三好學(xué)生的概率為!12分

(理)∵,,。……………………9分

的分布列如下表:

0

1

2

3

的數(shù)學(xué)期望。……………………12分

19.(12分)解析:(Ⅰ)時(shí),

,

    

得,   ………3分

 

 

+

0

0

+

遞增

極大值

遞減

極小值

遞增

      ………………………6分

(Ⅱ)在定義域上是增函數(shù),

對(duì)恒成立,即 

   ………………………9分

(當(dāng)且僅當(dāng)時(shí),

               

 ………………………4分

學(xué)科網(wǎng)(Zxxk.Com)              

20.解析:(Ⅰ)∵,∴,∵底面,∴,∴平面,∴,又∵平面,∴,∴平面,∴。………………………4分

(Ⅱ)∵平面,∴,∴為二面角的平面角,………………………6分

,,∴,又∵平面,∴,∴二面角的正切值的大小為!8分

(Ⅲ)過(guò)點(diǎn),交于點(diǎn),∵平面,∴在平面內(nèi)的射影,∴與平面所成的角,………………………10分

學(xué)科網(wǎng)(Zxxk.Com),∴,又∵,∴與平面所成的角相等,∴與平面所成角的正切值為!12分

解法2:如圖建立空間直角坐標(biāo)系,(Ⅰ)∵,,∴點(diǎn)的坐標(biāo)分別是,,∴,,設(shè),∵平面,∴,∴,取,∴,∴。………………………4分

(Ⅱ)設(shè)二面角的大小為,∵平面的法向量是,平面的法向量是,∴,∴,∴二面角的正切值的大小為!8分

(Ⅲ)設(shè)與平面所成角的大小為,∵平面的法向量是,,∴,∴,∴與平面所成角的正切值為。………………………12分

21.(Ⅰ) 解析:如圖,設(shè)右準(zhǔn)線軸的交點(diǎn)為,過(guò)點(diǎn)分別向軸及右準(zhǔn)線引垂線,∵,∴,又∵,∴,………………………2分

,又∵,∴,又∵,解得,∴,∴雙曲線的方程為。………………………4分

(Ⅱ)聯(lián)立方程組   消得:

由直線與雙曲線交于不同的兩點(diǎn)得:

  于是 ,且    ………………①………………………6分

設(shè)、,則

……………………9分

,所以,解得      ……………②   

由①和②得    即

的取值范圍為!12分

22.(12分)解析:(Ⅰ)∵,∴,∴,∴數(shù)列是等差數(shù)列,………………………2分

又∵,∴公差為2,

,………………………4分

(Ⅱ)∵,∴,

∴數(shù)列是公比為2的等比數(shù)列,

,∴,………………………6分

(Ⅲ)∵

………………………8分

………………………10分

,∴,又∵,∴………………………12分

 

 


同步練習(xí)冊(cè)答案