20.觀察下表:1.2.3.4.5.6.7.8.9.10.11.1213.14.15.16.17.18.19.20.21.22--解答下列問題: (1)此表中第10行的第10個數(shù)是幾? (2)2008是此表中第幾行的第幾個數(shù)? 是否存在n∈N+.使得從第n行起的連續(xù)3行的所有數(shù)之和為626?若存在.求出n的值,若不存在.請說明理由. 100080已知點F(1.0).點P在y軸上運動.點M在x軸上運動. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)
雅山中學(xué)采取分層抽樣的方法從應(yīng)屆高三學(xué)生中按照性別抽出20名學(xué)生作為樣本,其選報文科理科的情況如下表所示。

 


文科
2
5
理科
10
3
(Ⅰ)若在該樣本中從報考文科的學(xué)生中隨機地選出3人召開座談會,試求3人中既有男生也有女生的概率;
(Ⅱ)用假設(shè)檢驗的方法分析有多大的把握認(rèn)為雅山中學(xué)的高三學(xué)生選報文理科與性別有關(guān)?
參考公式和數(shù)據(jù):

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.07
2.71
3.84
5.02
6.64
7.88
10.83

查看答案和解析>>

(本小題滿分12分)(文科做前兩問;理科全做.)

某會議室用3盞燈照明,每盞燈各使用節(jié)能燈棍一只,且型號相同.假定每盞燈能否正常照明只與燈棍的壽命有關(guān),該型號的燈棍壽命為1年以上的概率為0.8,壽命為2年以上的概率為0.3,從使用之日起每滿1年進行一次燈棍更換工作,只更換已壞的燈棍,平時不換.

(I)在第一次燈棍更換工作中,求不需要更換燈棍的概率;

(II)在第二次燈棍更換工作中,對其中的某一盞燈來說,求該燈需要更換燈棍的概率;

(III)設(shè)在第二次燈棍更換工作中,需要更換的燈棍數(shù)為ξ,求ξ的分布列和期望.

 

 

查看答案和解析>>

(本小題滿分12分)(文科做前兩問;理科全做.)
某會議室用3盞燈照明,每盞燈各使用節(jié)能燈棍一只,且型號相同.假定每盞燈能否正常照明只與燈棍的壽命有關(guān),該型號的燈棍壽命為1年以上的概率為0.8,壽命為2年以上的概率為0.3,從使用之日起每滿1年進行一次燈棍更換工作,只更換已壞的燈棍,平時不換.
(I)在第一次燈棍更換工作中,求不需要更換燈棍的概率;
(II)在第二次燈棍更換工作中,對其中的某一盞燈來說,求該燈需要更換燈棍的概率;
(III)設(shè)在第二次燈棍更換工作中,需要更換的燈棍數(shù)為ξ,求ξ的分布列和期望.

查看答案和解析>>

(本題滿分12分)已知橢圓,過中心O作互相垂直的線段OA、OB與橢圓交于A、B, 求:

(1)的值

(2)判定直線AB與圓的位置關(guān)系

(文科)(3)求面積的最小值

(理科)(3)求面積的最大值

 

查看答案和解析>>

(本小題滿分12分)

    某中學(xué)采取分層抽樣的方法從應(yīng)屆高三學(xué)生中按照性別抽取20名學(xué)生,

其中8名女生中有3名報考理科,男生中有2名報考文科

   (1)是根據(jù)以上信息,寫出列聯(lián)表

   (2)用假設(shè)檢驗的方法分析有多大的把握認(rèn)為該中學(xué)的高三學(xué)生選報文理科與性別有關(guān)?參考公式

0.15

0.10

0.05

0.025

0.010

0.005

0.001

 

2.07

2.71

3.84

5.02

6.64

7.88

10.83

 

 

查看答案和解析>>

一、選擇題(本大題共12小題,每題5分,共60分,在每小題的選項中,只有一項符合)

1

2

3

4

5

6

7

8

9

10

11

12

C

A

C

B

B

A

D

B

D

A

C

理D

文C

二、填空題:本大題共4小題,每小題4分,共16分

13.(?∞,?2)    14.(理):15    文:(-1,0)∪(0,1)

15.2               16.①②③④

三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.(12分)

   (1)

             =……………………………………2分

             =………………………………………………4分

………………………………6分

得f(x)的減區(qū)間:………………8分

   (2)f(x平移后:

        …………………………………………10分

要使g(x)為偶函數(shù),則

<sub id="nmkuj"></sub>
<sub id="nmkuj"></sub>

    100080

    18.(12分)

       (1)馬琳勝出有兩種情況,3:1或3:2

            ………………………… 6分

       (2)

           

    分布列:    3      4     5

          P              ……………………10分

    E= ………………………………………………12分

    文科:前3次中獎的概率

    ……………………6分

    (2)在本次活動中未中獎的概率為

      (1-p)10…………………………………………………………8分

    恰在第10次中獎的概率為

    (1-p)9p………………………………………………………………10分

    ………………………………12分

    19.(12分)

    EM是平行四邊形 …… 3分

    平面PAB ……5分

    (2)過Q做QF//PA  交AD于F

     QF⊥平面ABCD

    作FH⊥AC  H為垂足

    ∠QHF是Q―AC―D的平面角……8分

    設(shè)AF=x  則

    FD=2-x

    在Rt△QFH中,

    ……10分

    ∴Q為PD中點……12分

    解法2

    (1)如圖所示A(0,0,0)  B(1,0,0)C(1,1,0)D(0,2,0) p(0,0,1)

     M(0,1,……………………………………3分

    是平面PAB的法向量  

        故MC//平面PAB…………5分

    (2)設(shè)

    設(shè)是平面QAC的法向量

    ………………………………9分

    為平面ACD的法向量,于是

    ∴Q為PD的中點…………………………………………12分

    20.經(jīng)分析可知第n行有3n-2個數(shù),                  理科        文科

    前n-1行有                    

    第n行的第1個數(shù)是                   2分        4分

    (1)第10行第10個數(shù)是127                      4分         7分

    (2)表中第37行、38行的第1個數(shù)分別為1927,2036

    所以2008是此表中的第37行

    第2008-1927+1=82個數(shù)                         8分         14分

    (3)不存在

    第n行第1個數(shù)是

     第n+2行最后一個數(shù)是 

                         =

    這3行共有  (3n-2)+[3(n+1)-2]+[3(n+2)-2]

              =9n+3  個數(shù)                                   10分

    這3行沒有數(shù)之和

                              12分

    此方程無正整數(shù)解.

    21.(理科14分,文科12分)                                            理科 文科

    (1)P(0,b)  M(a,0) 沒N(x,y) 由

         由                  ②

    將②代入①得曲線C的軌跡方程為 y2 = 4x                              5分 6分

    (2)點F′(-1,0)  ,設(shè)直線ly = k (x+1) 代入y2 = 4x

    k2x2+2 (k2-2)x+k2=0

                                                 7分 8分

    設(shè)A(x1,y1) B(x2,y2) D(x0y0) 則

    故直線DE方程為

    令y=0 得   

    的取值范圍是(3,+∞)                                   10分 12分

    (3)設(shè)點Q的坐標(biāo)為(-1,t),過點Q的切線為:yt = k (x+1)

    代入y2 = 4x   消去 x整理得ky2-4y+4t+4k=0                            12分

    △=16-16k (t+k)    令

    兩切線l1,l2 的斜率k1k2是此方程的兩根

    k1?k2=-1    故l1l2                                          14分

    22.文科:依題意                         2分

                                                     4分

              若f (x)在(-1,0)上是增函數(shù),則在(-1,1)上

              ∵的圖象是開口向下的拋物線                            6分

    解之得 t≥5                                                 12分

    理科:

    (1)

                                            2分

    x        0      (0,)         (,1)    1

                   ―         0        +

        -                  -4                -3

    所以    是減函數(shù)

            是增函數(shù)                                   4分

    的值域為[-4,-3]                              6分

    (2)

    ∵a≥1 當(dāng)

    時  g (x)↓

      時  g (x)∈[g (1),g (0)]=[1-2a3a2,-2a]                8分

    任給x1∈[0,1]  f (x1) ∈[-4,-3]

    存在x0∈[0,1]  使得  g (x0) = f (x1)

    則:[1-2a3a2,-2a]=[-4,-3]                                 10分

    即 

    又a≥1  故a的取值范圍為[1,]                                

     


    同步練習(xí)冊答案
    <sup id="nmkuj"><small id="nmkuj"><rt id="nmkuj"></rt></small></sup>
    <tr id="nmkuj"><div id="nmkuj"><form id="nmkuj"></form></div></tr>
      • <rt id="nmkuj"><optgroup id="nmkuj"></optgroup></rt>