題目列表(包括答案和解析)
如圖,已知圓錐體的側(cè)面積為,底面半徑和互相垂直,且,是母線的中點.
(1)求圓錐體的體積;
(2)異面直線與所成角的大小(結(jié)果用反三角函數(shù)表示).
【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。
第一問中,由題意,得,故
從而體積.2中取OB中點H,聯(lián)結(jié)PH,AH.
由P是SB的中點知PH//SO,則(或其補角)就是異面直線SO與PA所成角.
由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得;
在中,,PH=1/2SB=2,,
則,所以異面直線SO與P成角的大arctan
解:(1)由題意,得,
故從而體積.
(2)如圖2,取OB中點H,聯(lián)結(jié)PH,AH.
由P是SB的中點知PH//SO,則(或其補角)就是異面直線SO與PA所成角.
由SO平面OAB,PH平面OAB,PHAH.
在OAH中,由OAOB得;
在中,,PH=1/2SB=2,,
則,所以異面直線SO與P成角的大arctan
對于下列命題:
①已知集合,,則;
②函數(shù)在為單調(diào)函數(shù);
③在平面直角坐標系內(nèi),點與在直線的異側(cè);
④若則或;
⑤互為反函數(shù)的兩個不同函數(shù)的圖象若有交點,則交點一定在直線上。其中正確命題的序號為 。(寫出所有正確命題的序號)
對于下列命題:
①已知集合,,則;
②函數(shù)在為單調(diào)函數(shù);
③在平面直角坐標系內(nèi),點與在直線的異側(cè);
④若則或;
⑤互為反函數(shù)的兩個不同函數(shù)的圖象若有交點,則交點一定在直線上。其中正確命題的序號為 。(寫出所有正確命題的序號)
一、選擇題(每小題5分,滿分60分)
1
2
3
4
5
6
7
8
9
10
11
12
D
C
D
B
B
A
C
C
A
D
A
D
二、填空題(每小題4分,滿分16分)
13.-6 14. 15. 16.②③
三、解答題(第17、18、19、20、21題各12分,第22題14分,共74分)
17.(I)
(Ⅱ)
函數(shù)的值域為
18.解:(I)記“甲回答對這道題”、“乙回答對這道題”、“丙回答對這道題”分別為事件
、、,則,且有即
(Ⅱ)由(1)
則甲、乙、丙三人中恰有兩人回答對該題的概率為:
19.解:法一
(I)設是的中點,連結(jié),
則四邊形為方形,,故,
即
又
平面
(Ⅱ)由(I)知平面,
又平面,,
取的中點,連結(jié)又,
則,取的中點,連結(jié)則
為二面角的平面角
連結(jié),在中,,
取的中點,連結(jié),,在中,
二面角的余弦值為
法二:
(I)以為原點,所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標系,則
又因為
所以,平面
(Ⅱ)設為平面的一個法向量。
由得
取,則又,
設為平面的一個法向量,由,,
得取取
設與的夾角為,二面角為,顯然為銳角,
,即為所求
20.解:(I)或
故的單調(diào)遞增區(qū)間是和
單調(diào)遞減區(qū)間是(0,2)
(Ⅱ)
在和遞增,在(-1,3)遞減。
有三個相異實根
21.解:(I)設的公差為,則:
(Ⅱ)當時,,由,得
當時,,
,即
是以為首項,為公比的等比數(shù)列。
(Ⅲ)由(Ⅱ)可知:
22.解:(I)設過與拋物線的相切的直線的斜率是,
則該切線的方程為:
由得
則都是方程的解,故
(Ⅱ)設
由于,故切線的方程是:
則
,同理
則直線的方程是,則直線過定點(0,2)
(Ⅲ)要使最小,就是使得到直線的距離最小,而到直線的距離
當且僅當即時取等號
設
由得,則
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com