2.若命題則.該命題的否定是 查看更多

 

題目列表(包括答案和解析)

若命題p:?x∈R,2x2-1>0,則該命題的否定是( 。

查看答案和解析>>

若命題p:,則該命題的否定是(    )

(A)                                   (B)

(C)                                   (D)

 

查看答案和解析>>

若命題p:,則該命題的否定是(   )

A. B.
C. D.

查看答案和解析>>

若命題p:?x∈R,2x2-1>0,則該命題的否定是(  )
A.?x∈R,2x2-1<0B.?x∈R,2x2-1≤0
C.?x∈R,2x2-1≤0D.?x∈R,2x2-1>0

查看答案和解析>>

若命題p:?x∈R,2x2-1>0,則該命題的否定是( )
A.?x∈R,2x2-1<0
B.?x∈R,2x2-1≤0
C.?x∈R,2x2-1≤0
D.?x∈R,2x2-1>0

查看答案和解析>>

一、選擇題:

1―5  ACBBD    6―10  BCDAC

二、填空題:

11.60    12.       13.―     14.

15.2    16.    17.

三、解答題:

18.解:(I)

20090506

   (II)由于區(qū)間的長度是為,為半個周期。

    又分別取到函數(shù)的最小值

所以函數(shù)上的值域為。……14分

19.解:(1)該同學投中于球但未通過考核,即投藍四次,投中二次,且這兩次不連續(xù),其概率為                                 …………5分

   (2)在這次考核中,每位同學通過考核的概率為

      ………………10分

    隨機變量X服從其數(shù)學期望

  …………14分

20.解:(1)設(shè)FD的中點為G,則TG//BD,而BD//CE,

      1.     當a=5時,AF=5,BD=1,得TG=3。

            又CE=3,TG=CE。

            *四邊形TGEC是平行四邊形。      

        *CT//EG,TC//平面DEF,………………4分

           (2)以T為原點,以射線TB,TC,TG分別為x,y,z軸,

        建立空間直角坐標系,則D(1,0,1),

                      ………………6分

          <pre id="gttsv"><tt id="gttsv"><center id="gttsv"></center></tt></pre><small id="gttsv"><tbody id="gttsv"><noframes id="gttsv"></noframes></tbody></small>

                則平面DEF的法向量n=(x,y,z)滿足:

            <i id="gttsv"></i>

             

                解之可得又平面ABC的法向量

            m=(0,0,1)

               

               即平面DEF與平面ABC相交所成且為銳角的二面角的余弦值為  ……9分

               (3)由P在DE上,可設(shè),……10分

                則

                               ………………11分

                若CP⊥平面DEF,則

                即

             

             

                解之得:                ……………………13分

                即當a=2時,在DE上存在點P,滿足DP=3PE,使CP⊥平面DEF!14分

            21.解:(1)因為        所以

                橢圓方程為:                          ………………4分

               (2)由(1)得F(1,0),所以。假設(shè)存在滿足題意的直線l,設(shè)l的方程為

               

                代入       ………………6分

                設(shè)   ①

                              ……………………8分

                設(shè)AB的中點為M,則

                。

                 ……………………11分

                ,即存在這樣的直線l

                當時, k不存在,即不存在這樣的直線l;……………………14分

             

             

             

             

            22.解:(I) ……………………2分

                令(舍去)

                單調(diào)遞增;

                當單調(diào)遞減。    ……………………4分

                為函數(shù)在[0,1]上的極大值。        ……………………5分

               (II)由

             ①        ………………………7分

            設(shè),

            依題意知上恒成立。

            都在上單調(diào)遞增,要使不等式①成立,

            當且僅當…………………………11分

               (III)由

            ,則

            上遞增;

            上遞減;

                    …………………………16分

             

             


            同步練習冊答案
          • <i id="gttsv"></i>