:y=k:y=k(x-2)+b-1再將+b-1+2=kx-k+b+1. 查看更多

 

題目列表(包括答案和解析)

將直線y=2x-3向右平移3個單位,再向上平移1個單位,求平移后的直線的關(guān)系式.
解:在直線y=2x-3上任取兩點A(1,-1),B(0,-3).
由題意知:
點A向右平移3個單位得A′(4,-1);再向上平移1個單位得A″(4,0)
點B向右平移3個單位得B′(3,-3);再向上平移1個單位得B″(3,-2)
設(shè)平移后的直線的關(guān)系式為y=kx+b.
則點A″(4,0),B″(3,-2)在該直線上,
可解得k=2,b=-8.
所以平移后的直線的關(guān)系式為y=2x-8.
根據(jù)以上信息解答下面問題:
將二次函數(shù)y=-x2+2x+3的圖象向左平移1個單位,再向下平移2個單位,求平移后的拋物線的關(guān)系式.(平移拋物線形狀不變)

查看答案和解析>>

(2009•北京)如圖,在平面直角坐標系xOy中,△ABC三個頂點的坐標分別為A(-6,0),B(6,0),C(0,4),延長AC到點D,使CD=AC,過點D作DE∥AB交BC的延長線于點E.
(1)求D點的坐標;
(2)作C點關(guān)于直線DE的對稱點F,分別連接DF、EF,若過B點的直線y=kx+b將四邊形CDFE分成周長相等的兩個四邊形,確定此直線的解析式;
(3)設(shè)G為y軸上一點,點P從直線y=kx+b與y軸的交點出發(fā),先沿y軸到達G點,再沿GA到達A點,若P點在y軸上運動的速度是它在直線GA上運動速度的2倍,試確定G點的位置,使P點按照上述要求到達A點所用的時間最短.(要求:簡述確定G點位置的方法,但不要求證明)

查看答案和解析>>

(2009•北京)如圖,在平面直角坐標系xOy中,△ABC三個頂點的坐標分別為A(-6,0),B(6,0),C(0,4),延長AC到點D,使CD=AC,過點D作DE∥AB交BC的延長線于點E.
(1)求D點的坐標;
(2)作C點關(guān)于直線DE的對稱點F,分別連接DF、EF,若過B點的直線y=kx+b將四邊形CDFE分成周長相等的兩個四邊形,確定此直線的解析式;
(3)設(shè)G為y軸上一點,點P從直線y=kx+b與y軸的交點出發(fā),先沿y軸到達G點,再沿GA到達A點,若P點在y軸上運動的速度是它在直線GA上運動速度的2倍,試確定G點的位置,使P點按照上述要求到達A點所用的時間最短.(要求:簡述確定G點位置的方法,但不要求證明)

查看答案和解析>>

(2009•北京)如圖,在平面直角坐標系xOy中,△ABC三個頂點的坐標分別為A(-6,0),B(6,0),C(0,4),延長AC到點D,使CD=AC,過點D作DE∥AB交BC的延長線于點E.
(1)求D點的坐標;
(2)作C點關(guān)于直線DE的對稱點F,分別連接DF、EF,若過B點的直線y=kx+b將四邊形CDFE分成周長相等的兩個四邊形,確定此直線的解析式;
(3)設(shè)G為y軸上一點,點P從直線y=kx+b與y軸的交點出發(fā),先沿y軸到達G點,再沿GA到達A點,若P點在y軸上運動的速度是它在直線GA上運動速度的2倍,試確定G點的位置,使P點按照上述要求到達A點所用的時間最短.(要求:簡述確定G點位置的方法,但不要求證明)

查看答案和解析>>

(2009•北京)如圖,在平面直角坐標系xOy中,△ABC三個頂點的坐標分別為A(-6,0),B(6,0),C(0,4),延長AC到點D,使CD=AC,過點D作DE∥AB交BC的延長線于點E.
(1)求D點的坐標;
(2)作C點關(guān)于直線DE的對稱點F,分別連接DF、EF,若過B點的直線y=kx+b將四邊形CDFE分成周長相等的兩個四邊形,確定此直線的解析式;
(3)設(shè)G為y軸上一點,點P從直線y=kx+b與y軸的交點出發(fā),先沿y軸到達G點,再沿GA到達A點,若P點在y軸上運動的速度是它在直線GA上運動速度的2倍,試確定G點的位置,使P點按照上述要求到達A點所用的時間最短.(要求:簡述確定G點位置的方法,但不要求證明)

查看答案和解析>>


同步練習(xí)冊答案