題目列表(包括答案和解析)
已知直線某學(xué)生做如下變形,由直線與雙曲線聯(lián)立消y得形如的方程,當(dāng)A=0時該方程有一解;當(dāng)A≠0時,恒成立,若該生計算過程正確,則實數(shù)m的取值范圍是 .
設(shè)橢圓 :()的一個頂點為,,分別是橢圓的左、右焦點,離心率 ,過橢圓右焦點 的直線 與橢圓 交于 , 兩點.
(1)求橢圓的方程;
(2)是否存在直線 ,使得 ,若存在,求出直線 的方程;若不存在,說明理由;
【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關(guān)系的運用。(1)中橢圓的頂點為,即又因為,得到,然后求解得到橢圓方程(2)中,對直線分為兩種情況討論,當(dāng)直線斜率存在時,當(dāng)直線斜率不存在時,聯(lián)立方程組,結(jié)合得到結(jié)論。
解:(1)橢圓的頂點為,即
,解得, 橢圓的標(biāo)準(zhǔn)方程為 --------4分
(2)由題可知,直線與橢圓必相交.
①當(dāng)直線斜率不存在時,經(jīng)檢驗不合題意. --------5分
②當(dāng)直線斜率存在時,設(shè)存在直線為,且,.
由得, ----------7分
,,
=
所以, ----------10分
故直線的方程為或
即或
如圖,直線與拋物線交于兩點,與軸相交于點,且.
(1)求證:點的坐標(biāo)為;
(2)求證:;
(3)求的面積的最小值.
【解析】設(shè)出點M的坐標(biāo),并把過點M的方程設(shè)出來.為避免對斜率不存在的情況進行討論,可以設(shè)其方程為,然后與拋物線方程聯(lián)立消x,根據(jù),即可建立關(guān)于的方程.求出的值.
(2)在第(1)問的基礎(chǔ)上,證明:即可.
(3)先建立面積S關(guān)于m的函數(shù)關(guān)系式,根據(jù)建立即可,然后再考慮利用函數(shù)求最值的方法求最值.
過拋物線的對稱軸上的定點,作直線與拋物線相交于兩點.
(I)試證明兩點的縱坐標(biāo)之積為定值;
(II)若點是定直線上的任一點,試探索三條直線的斜率之間的關(guān)系,并給出證明.
【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.
(1)中證明:設(shè)下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達定理得
(2)中:因為三條直線AN,MN,BN的斜率成等差數(shù)列,下證之
設(shè)點N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=
KAN+KBN=+
本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.
某上市股票在30天內(nèi)每股的交易價格(元)與時間(天)所組成的有序數(shù)對落在下圖中的兩條線段上,該股票在30天內(nèi)的日交易量(萬股)與時間(天)的部分數(shù)據(jù)如下表所示.
第t天 |
4 |
10 |
16 |
22 |
Q(萬股) |
36 |
30 |
24 |
18 |
⑴根據(jù)提供的圖象,寫出該種股票每股交易價格(元)與時間(天)所滿足的函數(shù)關(guān)系式;
⑵根據(jù)表中數(shù)據(jù)確定日交易量(萬股)與時間(天)的一次函數(shù)關(guān)系式;
⑶在(2)的結(jié)論下,用(萬元)表示該股票日交易額,寫出關(guān)于的函數(shù)關(guān)系式,并求這30天中第幾天日交易額最大,最大值為多少?
【解析】(1)根據(jù)圖象可知此函數(shù)為分段函數(shù),在(0,20]和(20,30]兩個區(qū)間利用待定系數(shù)法分別求出一次函數(shù)關(guān)系式聯(lián)立可得P的解析式;
(2)因為Q與t成一次函數(shù)關(guān)系,根據(jù)表格中的數(shù)據(jù),取出兩組即可確定出Q的解析式;
(3)根據(jù)股票日交易額=交易量×每股較易價格可知y=PQ,可得y的解析式,分別在各段上利用二次函數(shù)求最值的方法求出即可.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com