22.解:(1)依題意有.則.將點代入得.而...故, 查看更多

 

題目列表(包括答案和解析)

如圖,,…,,…是曲線上的點,,,…,,…是軸正半軸上的點,且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標原點).

(1)寫出、之間的等量關系,以及、之間的等量關系;

(2)求證:);

(3)設,對所有,恒成立,求實數的取值范圍.

【解析】第一問利用有,得到

第二問證明:①當時,可求得,命題成立;②假設當時,命題成立,即有則當時,由歸納假設及

第三問 

.………………………2分

因為函數在區(qū)間上單調遞增,所以當時,最大為,即

解:(1)依題意,有,………………4分

(2)證明:①當時,可求得,命題成立; ……………2分

②假設當時,命題成立,即有,……………………1分

則當時,由歸納假設及,

解得不合題意,舍去)

即當時,命題成立.  …………………………………………4分

綜上所述,對所有,.    ……………………………1分

(3) 

.………………………2分

因為函數在區(qū)間上單調遞增,所以當時,最大為,即

.……………2分

由題意,有. 所以,

 

查看答案和解析>>

閱讀下面材料:
根據兩角和與差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
α+β=A,α-β=B 有α=
A+B
2
,β=
A-B
2

代入③得 sinA+cosB=2sin
A+B
2
cos
A-B
2

(1)類比上述推理方法,根據兩角和與差的余弦公式,證明:cosA-cosB=-2sin
A+B
2
sin
A-B
2
;
(2)若△ABC的三個內角A,B,C滿足cos2A+cox2C-cos2B=1,直接利用閱讀材料及(1)中的結論試判斷△ABC的形狀.

查看答案和解析>>

閱讀下面材料:
根據兩角和與差的正弦公式,有:
sin(α+β)=sinαcosβ+cosαsinβ…①
sin(α-β)=sinαcosβ-cosαsinβ…②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ…③
令α+β=A,α-β=B有α=
A+B
2
,β=
A-B
2

代入③得sinA+sinB=2sin
A+B
2
cos
A-B
2

(Ⅰ)類比上述推理方法,根據兩角和與差的余弦公式,證明:cosA-cosB=-2sin
A+B
2
sin
A-B
2
;
(Ⅱ)若△ABC的三個內角A,B,C滿足cos2A-cos2B=1-cos2C,試判斷△ABC的形狀.(提示:如果需要,也可以直接利用閱讀材料及(Ⅰ)中的結論)

查看答案和解析>>

閱讀下面材料:
根據兩角和與差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
α+β=A,α-β=B 有α=
A+B
2
,β=
A-B
2

代入③得 sinA+cosB=2sin
A+B
2
cos
A-B
2

(1)類比上述推理方法,根據兩角和與差的余弦公式,證明:cosA-cosB=-2sin
A+B
2
sin
A-B
2
;
(2)若△ABC的三個內角A,B,C滿足cos2A+cox2C-cos2B=1,直接利用閱讀材料及(1)中的結論試判斷△ABC的形狀.

查看答案和解析>>

閱讀下面材料:根據兩角和與差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=β 有α=
A+B
2
,β=
A-B
2

代入③得 sinA+subB=2sin
A+B
2
cos
A-B
2

(Ⅰ) 類比上述推理方法,根據兩角和與差的余弦公式,證明:cosA-cosB=-2sin
A+B
2
sin
A-B
2
;
(Ⅱ)求值:sin220°+cos250°+sin20°cos50°(提示:如果需要,也可以直接利用閱讀材料及(Ⅰ)中的結論)

查看答案和解析>>


同步練習冊答案