29解:依題設(shè)知.. 查看更多

 

題目列表(包括答案和解析)

解:(Ⅰ)設(shè),其半焦距為.則

   由條件知,得

   的右準(zhǔn)線方程為,即

   的準(zhǔn)線方程為

   由條件知, 所以,故,

   從而,  

(Ⅱ)由題設(shè)知,設(shè),,,

   由,得,所以

   而,由條件,得

   由(Ⅰ)得.從而,,即

   由,得.所以,

   故

查看答案和解析>>

已知,設(shè)是方程的兩個(gè)根,不等式對任意實(shí)數(shù)恒成立;函數(shù)有兩個(gè)不同的零點(diǎn).求使“P且Q”為真命題的實(shí)數(shù)的取值范圍.

【解析】本試題主要考查了命題和函數(shù)零點(diǎn)的運(yùn)用。由題設(shè)x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當(dāng)a∈[1,2]時(shí),的最小值為3. 當(dāng)a∈[1,2]時(shí),的最小值為3.

要使|m-5|≤|x1-x2|對任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

可得到要使“P∧Q”為真命題,只需P真Q真即可。

解:由題設(shè)x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當(dāng)a∈[1,2]時(shí),的最小值為3.

要使|m-5|≤|x1-x2|對任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

綜上,要使“P∧Q”為真命題,只需P真Q真,即

解得實(shí)數(shù)m的取值范圍是(4,8]

 

查看答案和解析>>

已知函數(shù)

(1)設(shè)是函數(shù)的一個(gè)零點(diǎn),求的值;

(2)求函數(shù)的單調(diào)遞增區(qū)間.

【解析】第一問利用題設(shè)知.因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912214835885328/SYS201207091222193901874816_ST.files/image009.png">是函數(shù)的一個(gè)零點(diǎn),所以

所以

第二問

當(dāng),即)時(shí),

函數(shù)是增函數(shù),

故函數(shù)的單調(diào)遞增區(qū)間是

 

查看答案和解析>>

若二次函數(shù)y=f(x)的圖象經(jīng)過原點(diǎn),且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范圍.

分析:要求f(-2)的取值范圍,只需找到含人f(-2)的不等式(組).由于y=f(x)是二次函數(shù),所以應(yīng)先將f(x)的表達(dá)形式寫出來.即可求得f(-2)的表達(dá)式,然后依題設(shè)條件列出含有f(-2)的不等式(組),即可求解.

查看答案和解析>>

如圖,三棱柱中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點(diǎn)。

(I) 證明:平面⊥平面

(Ⅱ)平面分此棱柱為兩部分,求這兩部分體積的比.

【命題意圖】本題主要考查空間線線、線面、面面垂直的判定與性質(zhì)及幾何體的體積計(jì)算,考查空間想象能力、邏輯推理能力,是簡單題.

【解析】(Ⅰ)由題設(shè)知BC⊥,BC⊥AC,,∴,    又∵,∴,

由題設(shè)知,∴=,即,

又∵,   ∴⊥面,    ∵,

∴面⊥面;

(Ⅱ)設(shè)棱錐的體積為=1,由題意得,==,

由三棱柱的體積=1,

=1:1,  ∴平面分此棱柱為兩部分體積之比為1:1

 

查看答案和解析>>


同步練習(xí)冊答案