的長(zhǎng)即為點(diǎn)到平面的距離. 查看更多

 

題目列表(包括答案和解析)

平面幾何里有結(jié)論:“邊長(zhǎng)為a的正三角形內(nèi)任意一點(diǎn)到三邊的距離之和為定值”,若考察棱長(zhǎng)為a的正四面體(即各棱長(zhǎng)均為a的三棱錐),則類似的結(jié)論為________

查看答案和解析>>

精英家教網(wǎng)現(xiàn)有一塊棱長(zhǎng)為a的正方體形的木料,如圖,M、N、P分別為AD、CD、BB1的中點(diǎn).現(xiàn)要沿過(guò)M、N、P三點(diǎn)的平面將木料鋸開.
(1)求作鋸面與平面AA1C1C的交線GH,其中G、H分別在C1C、AA1上(寫出作圖過(guò)程即可,不必證明),并說(shuō)明GH與平面ABCD的關(guān)系,然后給出證明.
(2)若Q為C1D1的中點(diǎn).求點(diǎn)P到平面MNQ的距離.

查看答案和解析>>

現(xiàn)有一塊棱長(zhǎng)為a的正方體形的木料,如圖,M、N、P分別為AD、CD、BB1的中點(diǎn).現(xiàn)要沿過(guò)M、N、P三點(diǎn)的平面將木料鋸開.
(1)求作鋸面與平面AA1C1C的交線GH,其中G、H分別在C1C、AA1上(寫出作圖過(guò)程即可,不必證明),并說(shuō)明GH與平面ABCD的關(guān)系,然后給出證明.
(2)若Q為C1D1的中點(diǎn).求點(diǎn)P到平面MNQ的距離.

查看答案和解析>>

拓展探究題
(1)已知兩個(gè)圓:①x2+y2=1;②x2+(y-3)2=1,則由①式減去②式可得兩圓的對(duì)稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個(gè)更一般的命題,而已知命題應(yīng)成為所推廣命題的一個(gè)特例.推廣的命題為
已知兩個(gè)圓:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,則由①式減去②式可得兩圓的對(duì)稱軸方程
已知兩個(gè)圓:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,則由①式減去②式可得兩圓的對(duì)稱軸方程

(2)平面幾何中有正確命題:“正三角形內(nèi)任意一點(diǎn)到三邊的距離之和等于定值,大小為邊長(zhǎng)的
3
2
倍”,請(qǐng)你寫出此命題在立體幾何中類似的真命題:
正四面體內(nèi)任意一點(diǎn)到四個(gè)面的距離之和是一個(gè)定值,大小為棱長(zhǎng)的
6
3
正四面體內(nèi)任意一點(diǎn)到四個(gè)面的距離之和是一個(gè)定值,大小為棱長(zhǎng)的
6
3

查看答案和解析>>

拓展探究題
(1)已知兩個(gè)圓:①x2+y2=1;②x2+(y-3)2=1,則由①式減去②式可得兩圓的對(duì)稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個(gè)更一般的命題,而已知命題應(yīng)成為所推廣命題的一個(gè)特例.推廣的命題為______.
(2)平面幾何中有正確命題:“正三角形內(nèi)任意一點(diǎn)到三邊的距離之和等于定值,大小為邊長(zhǎng)的
3
2
倍”,請(qǐng)你寫出此命題在立體幾何中類似的真命題:______.

查看答案和解析>>


同步練習(xí)冊(cè)答案