(C)第三象限 (D)第四象限 否 查看更多

 

題目列表(包括答案和解析)

<optgroup id="a5xbh"></optgroup>
  • <input id="a5xbh"><legend id="a5xbh"></legend></input>
  • <pre id="a5xbh"><dfn id="a5xbh"><acronym id="a5xbh"></acronym></dfn></pre>

    • <label id="a5xbh"><em id="a5xbh"><input id="a5xbh"></input></em></label>

      2009.4

       

      1-10.CDABB   CDBDA

      11.       12. 4        13.        14.       15.  

      16.   17.

      18.解:(Ⅰ)由題意,有,

      .…………………………5分

      ,得

      ∴函數(shù)的單調增區(qū)間為 .……………… 7分

      (Ⅱ)由,得

      .           ……………………………………………… 10分

      ,∴.      ……………………………………………… 14分

      19.解:(Ⅰ)設數(shù)列的公比為,由,.             …………………………………………………………… 4分

      ∴數(shù)列的通項公式為.      ………………………………… 6分

      (Ⅱ) ∵,    ,      ①

      .      ②         

      ①-②得: …………………12分

                   得,                           …………………14分

      20.解:(I)取中點,連接.

      分別是梯形的中位線

      ,又

      ∴面,又

      .……………………… 7分

      (II)由三視圖知,是等腰直角三角形,

           連接

           在面AC1上的射影就是,∴

          

      ∴當的中點時,與平面所成的角

        是.           ………………………………14分

                                                     

      21.解:(Ⅰ)由題意:.

      為點M的軌跡方程.     ………………………………………… 4分

      (Ⅱ)由題易知直線l1,l2的斜率都存在,且不為0,不妨設,MN方程為 聯(lián)立得:,設6ec8aac122bd4f6e

          ∴由拋物線定義知:|MN|=|MF|+|NF|…………7分

             同理RQ的方程為,求得.  ………………………… 9分

      .  ……………………………… 13分

      當且僅當時取“=”,故四邊形MRNQ的面積的最小值為32.………… 15分

      22. 解:(Ⅰ),由題意得

      所以                    ………………………………………………… 4分

      (Ⅱ)證明:令,

      得:,……………………………………………… 7分

      (1)當時,,在,即上單調遞增,此時.

                …………………………………………………………… 10分

      (2)當時,,在,在,在,即上單調遞增,在上單調遞減,在上單調遞增,或者,此時只要或者即可,得,

      .                        …………………………………………14分

      由 (1) 、(2)得 .

      ∴綜上所述,對于,使得成立. ………………15分

      高考資源網( www.ks5u.com),中國最大的高考網站,您身邊的高考專家。

       


      同步練習冊答案