13.上一點(diǎn).在處引切線交軸于則= . 查看更多

 

題目列表(包括答案和解析)

已知z是實(shí)系數(shù)方程x2+2bx+c=0的虛根,記它在直角坐標(biāo)平面上的對應(yīng)點(diǎn)為Pz
(1)若(b,c)在直線2x+y=0上,求證:Pz在圓C1:(x-1)2+y2=1上;
(2)給定圓C:(x-m)2+y2=r2(m、r∈R,r>0),則存在唯一的線段s滿足:①若Pz在圓C上,則(b,c)在線段s上;②若(b,c)是線段s上一點(diǎn)(非端點(diǎn)),則Pz在圓C上、寫出線段s的表達(dá)式,并說明理由;
(3)由(2)知線段s與圓C之間確定了一種對應(yīng)關(guān)系,通過這種對應(yīng)關(guān)系的研究,填寫表(表中s1是(1)中圓C1的對應(yīng)線段).
    線段s與線段s1的關(guān)系 m、r的取值或表達(dá)式 
 s所在直線平行于s1所在直線  
 s所在直線平分線段s1  

查看答案和解析>>

已知z是實(shí)系數(shù)方程x2+2bx+c=0的虛根,記它在直角坐標(biāo)平面上的對應(yīng)點(diǎn)為Pz,
(1)若(b,c)在直線2x+y=0上,求證:Pz在圓C1:(x-1)2+y2=1上;
(2)給定圓C:(x-m)2+y2=r2(m、r∈R,r>0),則存在唯一的線段s滿足:①若Pz在圓C上,則(b,c)在線段s上;②若(b,c)是線段s上一點(diǎn)(非端點(diǎn)),則Pz在圓C上、寫出線段s的表達(dá)式,并說明理由;
(3)由(2)知線段s與圓C之間確定了一種對應(yīng)關(guān)系,通過這種對應(yīng)關(guān)系的研究,填寫表(表中s1是(1)中圓C1的對應(yīng)線段).

查看答案和解析>>

(上海春卷22)已知是實(shí)系數(shù)方程的虛根,記它在直角坐標(biāo)平面上的對應(yīng)點(diǎn)為.

(1)若在直線上,求證:在圓上;

(2)給定圓),則存在唯一的線段滿足:①若在圓上,則在線段上;② 若是線段上一點(diǎn)(非端點(diǎn)),則在圓上. 寫出線段的表達(dá)式,并說明理由;

(3)由(2)知線段與圓之間確定了一種對應(yīng)關(guān)系,通過這種對應(yīng)關(guān)系的研究,填寫表一(表中是(1)中圓的對應(yīng)線段).

線段與線段的關(guān)系

的取值或表達(dá)式

所在直線平行于所在直線

所在直線平分線段

線段與線段長度相等

查看答案和解析>>

(上海春卷22)已知是實(shí)系數(shù)方程的虛根,記它在直角坐標(biāo)平面上的對應(yīng)點(diǎn)為.

(1)若在直線上,求證:在圓上;

(2)給定圓,),則存在唯一的線段滿足:①若在圓上,則在線段上;② 若是線段上一點(diǎn)(非端點(diǎn)),則在圓上. 寫出線段的表達(dá)式,并說明理由;

(3)由(2)知線段與圓之間確定了一種對應(yīng)關(guān)系,通過這種對應(yīng)關(guān)系的研究,填寫表一(表中是(1)中圓的對應(yīng)線段).

線段與線段的關(guān)系

的取值或表達(dá)式

所在直線平行于所在直線

所在直線平分線段

線段與線段長度相等

查看答案和解析>>

22.已知是實(shí)系數(shù)方程的虛根,記它在直角坐標(biāo)平面上的對應(yīng)點(diǎn)為.

(1)若在直線上,求證:在圓上;

(2)給定圓,則存在唯一的線段滿足:①若在圓上,則在線段上;②若是線段上一點(diǎn)(非端點(diǎn)),則在圓上.寫出線段的表達(dá)式,并說明理由;

(3)由(2)知線段與圓之間確定了一種對應(yīng)關(guān)系,通過這種對應(yīng)關(guān)系的研究,填寫表一(表中是(1)中圓的對應(yīng)線段).

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。

1.答案:A

解:依題意可知:由

顯然:不能推出

故選A ;

2.答案:D

解:依題意可知:設(shè)點(diǎn),則在點(diǎn)P處的切線的斜率為,即,又

故選D ;

3.答案:C

解:依題意可知:由是奇函數(shù),

故選C ;

4.答案:A

解:依題意可知:由

故選A;

5.答案:C

解:如圖:函數(shù)是周期函數(shù),T=1。

故選C;

 

6.答案:A

解:依題意可知:由,

故選A ;

7.答案:B

解:依題意可知:由圖可知:

。

8.答案:A

解:依題意可知:如圖,

,

則在中,

則在中,;

則在中,;

 

故選A ;

9.答案:D

解:依題意可知:因表示與同方向的單位向量,

表示與同方向的單位向量,故,而,

又(+,說明向量與向量垂直,根據(jù)向量加法的平行四邊形法則可知:向量所在直線 過向量所在線段中點(diǎn),根據(jù)等腰三角形三線合一的性質(zhì),可逆推為等腰三角形。又夾角為,故為等邊三角形。

故選D ;

10.答案:A

解:設(shè),在上,,,,排除D;在上,,,,排除B與C;故選A。

11.答案:B

解法一:正方體的八個頂點(diǎn)可確定條直線;條直線組成對直線;正方體的八個頂點(diǎn)可確定個面,其中12個四點(diǎn)面(6個表面,4個面對角面,2個體對角面),8個三點(diǎn)面;每個四點(diǎn)面上有條直線,6條直線組成對直線,12個四點(diǎn)面由12×15=180對直線組成;每個三點(diǎn)面上有條直線,3條直線組成對直線,8個三點(diǎn)面由8×3=24對直線組成;由正方體的八個頂點(diǎn)中的兩個所確定的所有直線中,取出兩條,這兩條直線是異面直線的概率為;

解法二:正方體的八個頂點(diǎn)可確定個四面體,每個四面體中有三對異面直線,由正方體的八個頂點(diǎn)中的兩個所確定的所有直線中,取出兩條,這兩條直線是異面直線的概率為;

12.答案:A

解:①正確;①中依題意可令,

當(dāng)時,上為減函數(shù),

又因在區(qū)間為減函數(shù),故;

②錯誤;②中當(dāng)

當(dāng)

③錯誤;③中當(dāng)時,

④正確;

圓的對稱軸為直徑所在的直線,故原命題正確。

故答案為:A。

二、填空題:本大題共4小題,每小題4分,共16分,把答案填在橫線上。

13.答案:

解:設(shè)P點(diǎn)的坐標(biāo)為,則

直線PQ的方程為:,

Q點(diǎn)的坐標(biāo)為,R點(diǎn)的坐標(biāo)為

故答案為:;

14.答案:

解:依題意可知:正四棱錐S―ABCD的底面正方形ABCD在過球心O的大圓上,設(shè)球半徑為R,AC=2R=

;

設(shè)球心O到側(cè)面SAB的距離為,連接

,,過,

連接SM,則,

,

4。

故答案為:;

15.答案:10

解:依題意可知:由,故的系數(shù)為。

故答案為:10    ;

16.答案:③

解:依題意可知:①錯,因在上,為減函數(shù),而在上,為增函數(shù)。

②錯,因在上,為增函數(shù),而在上,為減函數(shù)。

③正確。因在上,為增函數(shù)。

④錯,因在上,為增函數(shù),而在上,為減函數(shù),故時,函數(shù)有極大值。

⑤錯,因在上,為增函數(shù),故時,函數(shù)沒有極大值。

故答案為:③;

三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明,證明過程或演算步驟。

(17)解:,設(shè)中有個元素,顯然有,其中最大的一個是,由于是正整數(shù)集合,故

當(dāng)時,,此時不符合題意;

當(dāng)時,,顯然只有符合題意;

當(dāng)時,設(shè)其中,

此時令 ,

,則   ,

不符合題意;

,由于是正整數(shù)集合,故

 

    故時不符合題意;

綜上所述。

(18)解:令

故當(dāng)

(19)。答:與平面垂直的直線條數(shù)有1條為

證法一:依題意由圖可知:連,

,

 

證法二:依題意由圖建立空間直角坐標(biāo)系:

,

設(shè)與垂直的法向量為,則有:

,而,故。

(20)解:設(shè)S為勞動村全體農(nóng)民的集合,季度勞動村在外打工的農(nóng)民的集合,則季度勞動村沒有在外打工的農(nóng)民的集合,由題意有

所以

勞動村的農(nóng)民全年在外打工為,則

,

,

所以,

故勞動村至少有的農(nóng)民全年在外打工。

(21)解:①作圖進(jìn)行受力分析,如下圖示;

由向量的平行四邊形法則,力的平衡及解直角三角形等知識,得出:

  

② ∵,∴

上為減函數(shù),

∴當(dāng)逐漸增大時,也逐漸增大。

③要最小,則為最大,∴當(dāng)時,最小,最小值是

④要,則,∴當(dāng)時,。

(22)解:(Ⅰ)C的焦點(diǎn)為F(1,0),直線l的斜率為1,所以l的方程為

代入方程,并整理得  

設(shè)則有  

所以夾角的大小為

(Ⅱ)由題設(shè) 得  

  • 由②得,  ∵    ∴

    聯(lián)立①、③解得,依題意有

    又F(1,0),得直線l方程為

      

    當(dāng)時,l在方程y軸上的截距為

    由     可知在[4,9]上是遞減的,

    直線l在y軸上截距的變化范圍為

    作者:     湖南省衡陽市祁東縣育賢中學(xué)  高明生 

    PC:       421600

    TEL:      0734---6184532

    Cellphone: 13187168216

    E―mail:   hunanqidonggms@163.com

    QQ:        296315069


    同步練習(xí)冊答案