16.如果函數(shù)的導(dǎo)函數(shù)的圖象如右圖所示.給出下列判斷: 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=2lnx-x2
(Ⅰ) 求函數(shù)y=f(x)在[
12
,2]
上的最大值.
(Ⅱ)如果函數(shù)g(x)=f(x)-ax的圖象與x軸交于兩點(diǎn)A(x1,0)、B(x2,0),且0<x1<x2.y=g′(x)是
y=g(x)的導(dǎo)函數(shù),若正常數(shù)p,q滿足p+q=1,q≥p.求證:g′(px1+qx2)<0.

查看答案和解析>>

12、已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如下表.

f(x)的導(dǎo)函數(shù)y=f'(x)的圖象如圖所示.
下列關(guān)于函數(shù)f(x)的命題:
①函數(shù)y=f(x)是周期函數(shù);
②函數(shù)f(x)在[0,2]是減函數(shù);
③如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最大值為4;
④當(dāng)1<a<2時(shí),函數(shù)y=f(x)-a有4個(gè)零點(diǎn).
其中真命題的個(gè)數(shù)是( 。

查看答案和解析>>

(2012•天津模擬)已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如下表.
x -1 0 4 5
f(x) 1 2 2 1
f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示:
下列關(guān)于f(x)的命題:
①函數(shù)f(x)是周期函數(shù);
②函數(shù)f(x)在[0,2]是減函數(shù);
③如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最大值為4;
④當(dāng)1<a<2時(shí),函數(shù)y=f(x)-a有4個(gè)零點(diǎn);
⑤函數(shù)y=f(x)-a的零點(diǎn)個(gè)數(shù)可能為0、1、2、3、4個(gè).
其中正確命題的序號(hào)是
②⑤
②⑤

查看答案和解析>>

已知函數(shù)f(x)的定義域[-1,5],部分對(duì)應(yīng)值如表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示
x -1 0 2 4 5
F(x) 1 2 1.5 2 1
下列關(guān)于函數(shù)f(x)的命題;
①函數(shù)f(x)的值域?yàn)閇1,2];
②函數(shù)f(x)在[0,2]上是減函數(shù)
③如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最大值為4;
④當(dāng)1<a<2時(shí),函數(shù)y=f(x)-a最多有4個(gè)零點(diǎn).
其中正確命題的序號(hào)是
①②④
①②④

查看答案和解析>>

已知函數(shù)f(x)的定義域?yàn)?[-1,5],部分對(duì)應(yīng)值如下表,f(x)的導(dǎo)函數(shù) y?=f′(x)的圖象如圖所示,給出關(guān)于f(x)的下列命題:
x -1 0 4 5
f(x) 1 2 2 1
①函數(shù)y=f(x)在x=2時(shí),取極小值 
②函數(shù)f(x)在[0,1]是減函數(shù),在[1,2]是增函數(shù),
③當(dāng)1<a<2時(shí),函數(shù)y=f(x)-a有4個(gè)零點(diǎn)
④如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最大值為5,
其中所有正確命題序號(hào)為
①④
①④

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。

1.答案:A

解:依題意可知:由

顯然:不能推出。

故選A ;

2.答案:D

解:依題意可知:設(shè)點(diǎn),則在點(diǎn)P處的切線的斜率為,即,又

故選D ;

3.答案:C

解:依題意可知:由是奇函數(shù),

故選C ;

4.答案:A

解:依題意可知:由

故選A;

5.答案:C

解:如圖:函數(shù)是周期函數(shù),T=1。

故選C;

 

6.答案:A

解:依題意可知:由,,

故選A ;

7.答案:B

解:依題意可知:由圖可知:

。

8.答案:A

解:依題意可知:如圖,

,

則在中,;

則在中,;

則在中,

 

故選A ;

9.答案:D

解:依題意可知:因表示與同方向的單位向量,

表示與同方向的單位向量,故,而,

又(+,說明向量與向量垂直,根據(jù)向量加法的平行四邊形法則可知:向量所在直線 過向量所在線段中點(diǎn),根據(jù)等腰三角形三線合一的性質(zhì),可逆推為等腰三角形。又夾角為,故為等邊三角形。

故選D ;

10.答案:A

解:設(shè),在上,,,排除D;在上,,,,排除B與C;故選A。

11.答案:B

解法一:正方體的八個(gè)頂點(diǎn)可確定條直線;條直線組成對(duì)直線;正方體的八個(gè)頂點(diǎn)可確定個(gè)面,其中12個(gè)四點(diǎn)面(6個(gè)表面,4個(gè)面對(duì)角面,2個(gè)體對(duì)角面),8個(gè)三點(diǎn)面;每個(gè)四點(diǎn)面上有條直線,6條直線組成對(duì)直線,12個(gè)四點(diǎn)面由12×15=180對(duì)直線組成;每個(gè)三點(diǎn)面上有條直線,3條直線組成對(duì)直線,8個(gè)三點(diǎn)面由8×3=24對(duì)直線組成;由正方體的八個(gè)頂點(diǎn)中的兩個(gè)所確定的所有直線中,取出兩條,這兩條直線是異面直線的概率為;

解法二:正方體的八個(gè)頂點(diǎn)可確定個(gè)四面體,每個(gè)四面體中有三對(duì)異面直線,由正方體的八個(gè)頂點(diǎn)中的兩個(gè)所確定的所有直線中,取出兩條,這兩條直線是異面直線的概率為

12.答案:A

解:①正確;①中依題意可令

當(dāng)時(shí),上為減函數(shù),

又因在區(qū)間為減函數(shù),故;

②錯(cuò)誤;②中當(dāng)

當(dāng)

③錯(cuò)誤;③中當(dāng)時(shí),

④正確;

圓的對(duì)稱軸為直徑所在的直線,故原命題正確。

故答案為:A。

二、填空題:本大題共4小題,每小題4分,共16分,把答案填在橫線上。

13.答案:

解:設(shè)P點(diǎn)的坐標(biāo)為,則

直線PQ的方程為:,

Q點(diǎn)的坐標(biāo)為,R點(diǎn)的坐標(biāo)為,

故答案為:

14.答案:

解:依題意可知:正四棱錐S―ABCD的底面正方形ABCD在過球心O的大圓上,設(shè)球半徑為R,AC=2R=,

;

設(shè)球心O到側(cè)面SAB的距離為,連接

,,過,

連接SM,則,

,

4

故答案為:;

15.答案:10

解:依題意可知:由,故的系數(shù)為。

故答案為:10    ;

16.答案:③

解:依題意可知:①錯(cuò),因在上,為減函數(shù),而在上,為增函數(shù)。

②錯(cuò),因在上,為增函數(shù),而在上,為減函數(shù)。

③正確。因在上,為增函數(shù)。

④錯(cuò),因在上,為增函數(shù),而在上,為減函數(shù),故時(shí),函數(shù)有極大值。

⑤錯(cuò),因在上,為增函數(shù),故時(shí),函數(shù)沒有極大值。

故答案為:③;

三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明,證明過程或演算步驟。

(17)解:,設(shè)中有個(gè)元素,顯然有,其中最大的一個(gè)是,由于是正整數(shù)集合,故;

當(dāng)時(shí),,此時(shí)不符合題意;

當(dāng)時(shí),,顯然只有符合題意;

當(dāng)時(shí),設(shè)其中,

此時(shí)令

,則   ,

不符合題意;

,由于是正整數(shù)集合,故,

 

    故時(shí)不符合題意;

綜上所述。

(18)解:令

故當(dāng)

(19)。答:與平面垂直的直線條數(shù)有1條為

證法一:依題意由圖可知:連,

;

 

證法二:依題意由圖建立空間直角坐標(biāo)系:

設(shè)與垂直的法向量為,則有:

,而,故。

(20)解:設(shè)S為勞動(dòng)村全體農(nóng)民的集合,季度勞動(dòng)村在外打工的農(nóng)民的集合,則季度勞動(dòng)村沒有在外打工的農(nóng)民的集合,由題意有

所以

勞動(dòng)村的農(nóng)民全年在外打工為,則

,

,

所以,

。

故勞動(dòng)村至少有的農(nóng)民全年在外打工。

(21)解:①作圖進(jìn)行受力分析,如下圖示;

由向量的平行四邊形法則,力的平衡及解直角三角形等知識(shí),得出:

  

② ∵,∴

上為減函數(shù),

∴當(dāng)逐漸增大時(shí),也逐漸增大。

③要最小,則為最大,∴當(dāng)時(shí),最小,最小值是

④要,則,∴當(dāng)時(shí),。

(22)解:(Ⅰ)C的焦點(diǎn)為F(1,0),直線l的斜率為1,所以l的方程為

代入方程,并整理得  

設(shè)則有  

所以夾角的大小為

(Ⅱ)由題設(shè) 得  

    由②得,  ∵    ∴

    聯(lián)立①、③解得,依題意有

    又F(1,0),得直線l方程為

      

    當(dāng)時(shí),l在方程y軸上的截距為

    由     可知在[4,9]上是遞減的,

    直線l在y軸上截距的變化范圍為

    作者:     湖南省衡陽市祁東縣育賢中學(xué)  高明生 

    PC:       421600

    TEL:      0734---6184532

    Cellphone: 13187168216

    E―mail:   hunanqidonggms@163.com

    QQ:        296315069


    同步練習(xí)冊答案