⑴.證明:, 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)已知函數(shù)f(x)=
x
x+1
.?dāng)?shù)列{an}滿足:an>0,a1=1,且
an+1
=f(
an
)
,記數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=
2
2
[
1
an
+(
2
+1)n]
.求數(shù)列{bn}的通項(xiàng)公式;并判斷b4+b6是否仍為數(shù)列{bn}中的項(xiàng)?若是,請(qǐng)證明;否則,說明理由.
(Ⅱ)設(shè){cn}為首項(xiàng)是c1,公差d≠0的等差數(shù)列,求證:“數(shù)列{cn}中任意不同兩項(xiàng)之和仍為數(shù)列{cn}中的項(xiàng)”的充要條件是“存在整數(shù)m≥-1,使c1=md”.

查看答案和解析>>

精英家教網(wǎng)如圖,在底面邊長為1,側(cè)棱長為2的正四棱柱ABCD-A1B1C1D1中,P是側(cè)棱CC1上的一點(diǎn),CP=m.
(Ⅰ)試確定m,使直線AP與平面BDD1B1所成角為60°;
(Ⅱ)在線段A1C1上是否存在一個(gè)定點(diǎn)Q,使得對(duì)任意的m,D1Q⊥AP,并證明你的結(jié)論.

查看答案和解析>>

證明:過拋物線y=a(x-x1)•(x-x2)(a≠0,x1<x2)上兩點(diǎn)A(x1,0)、B(x2,0)的切線,與x軸所成的銳角相等.

查看答案和解析>>

精英家教網(wǎng)如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,E、F是AA1、AB的中點(diǎn).
(Ⅰ)證明:直線EE1∥平面FCC1
(Ⅱ)求二面角B-FC1-C的余弦值.

查看答案和解析>>

等比數(shù)列{an}的前n項(xiàng)和為Sn,已知對(duì)任意的n∈N+,點(diǎn)(n,Sn)均在函數(shù)y=bx+r(b>0且b≠1,b,r均為常數(shù)的圖象上.
(Ⅰ)求r的值.
(Ⅱ)當(dāng)b=2時(shí),記bn=2(log2an=1)(n∈N+),證明:對(duì)任意的,不等式成立
b1+1
b1
b2+1
b2
•…
bn+1
bn
n+1

查看答案和解析>>

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

D

C

D

B

C

A

C

B

D

B

11、2;12、;13、;14、;15、;16、

17、解:(1)
,   (6分)
的最小正周期為.                                 (8分)
(2)∵,∴,
.                               (12分)

18、解:(1)表示取出的三個(gè)球中數(shù)字最大者為3.

①三次取球均出現(xiàn)最大數(shù)字為3的概率

②三取取球中有2次出現(xiàn)最大數(shù)字3的概率

③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率

.   ……………………………………………………6分

(2)在時(shí), 利用(1)的原理可知:

,(=1,2,3,4)

 的概率分布為:

 

 

 

=1×+2×+3×+4× = .………………………………………………12分

19、解:(Ⅰ)作,垂足為,連結(jié),由側(cè)面底面,得底面

因?yàn)?sub>,所以,

,故為等腰直角三角形,,

由三垂線定理,得

(Ⅱ)由(Ⅰ)知,依題設(shè),

,由,,得

的面積

連結(jié),得的面積

設(shè)到平面的距離為,由于,得

,

解得

設(shè)與平面所成角為,則

所以,直線與平面所成的我為

20、解:(I)由題意知,因此,從而

又對(duì)求導(dǎo)得

由題意,因此,解得

(II)由(I)知),令,解得

當(dāng)時(shí),,此時(shí)為減函數(shù);

當(dāng)時(shí),,此時(shí)為增函數(shù).

因此的單調(diào)遞減區(qū)間為,而的單調(diào)遞增區(qū)間為

(III)由(II)知,處取得極小值,此極小值也是最小值,要使)恒成立,只需

,從而,

解得

所以的取值范圍為

21、解:(Ⅰ)解法一:易知

所以,設(shè),則

因?yàn)?sub>,故當(dāng),即點(diǎn)為橢圓短軸端點(diǎn)時(shí),有最小值

當(dāng),即點(diǎn)為橢圓長軸端點(diǎn)時(shí),有最大值

解法二:易知,所以,設(shè),則

(以下同解法一)

(Ⅱ)顯然直線不滿足題設(shè)條件,可設(shè)直線,

聯(lián)立,消去,整理得:

得:

,即  ∴

故由①、②得

22、(I)解:方程的兩個(gè)根為,

當(dāng)時(shí),,

所以;

當(dāng)時(shí),,,

所以;

當(dāng)時(shí),,

所以時(shí);

當(dāng)時(shí),,

所以

(II)解:

(III)證明:

所以,

當(dāng)時(shí),

,

同時(shí),

綜上,當(dāng)時(shí),

 

 

 


同步練習(xí)冊(cè)答案